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Rigidity percolation in a field

Cristian F. Moukarzel*
Departmento de Fı´sica Aplicada, CINVESTAV del IPN, Avenida Tecnolo´gico Km 6, 97310 Me´rida, Yucatán, Mexico

~Received 14 June 2003; published 5 November 2003!

Rigidity percolation withg degrees of freedom per site is analyzed on randomly diluted Erdo¨s-Renyi graphs,
with average connectivityg, in the presence of a fieldh. In the (g,h) plane, the rigid and flexible phases are
separated by a line of first-order transitions whose location is determined exactly. This line ends at a critical
point with classical critical exponents. Analytic expressions are given for the densitiesnF of uncanceled
degrees of freedom andg r of redundant bonds. Upon crossing the coexistence line,g r andnF are continuous,
although their first derivatives are discontinuous. We extend, for the case of nonzero field, a recently proposed
hypothesis, namely, that the density of uncanceled degrees of freedom is a ‘‘free energy’’ for rigidity percola-
tion. Analytic expressions are obtained for the energy, entropy, and specific heat. Some analogies with a
liquid-vapor transition are discussed. Particularizing to zero field, we find that the existence of a (g11) core
is a necessary condition for rigidity percolation withg degrees of freedom. At the transition pointgc , Maxwell
counting of degrees of freedom is exact on the rigid cluster and on the (g11) rigid core, i.e., the average
coordination of these subgraphs is exactly 2g, althoughgc , the average coordination of the whole system, is
smaller than 2g. gc is found to converge to 2g for largeg, i.e., in this limit Maxwell counting is exact globally
as well.

DOI: 10.1103/PhysRevE.68.056104 PACS number~s!: 05.70.Fh, 64.60.Ak, 02.10.Ox
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I. INTRODUCTION

Scalar percolation~SP! @1,2# is a paradigm for the geo
metric phase transition that takes place on an initially disc
nected lattice of pointlike sites when the densityp of present
bonds is continuously increased. At the percolation pointpc
the system becomes connected on a macroscopic scale.
may mean that transport can happen across the system~con-
ductivity, fluid flow!, or that the system becomes correlat
on macroscopic scales, i.e., ordered. It is in fact possibl
describe magnetic transitions in terms of the percolation
properly defined clusters@3–5#. Because of the generalit
and simplicity of the concepts involved, this paradigm h
found multiple applications in science@1,6,2,7#. In most
cases, the physical variables attached to sites are scalars
each site has one associateddegree of freedom.

A generalization of this paradigm considers the case
which there is more than one degree of freedom per site,
has been termed rigidity percolation~RP! @8–15#. In g-RP,
each site of a lattice hasg degrees of freedom, and eac
present bond eliminates one relative degree of freedom.
most commonly invoked application of RP deals with t
statics of structures. Consider, for example, the problem
bracing aframework in three dimensions, i.e., rigidly con
necting a set of pointlike joints by means of rotatable ba
Each joint has three translational degrees of freedomg
53, and each rotatable bar fixes the distance between
nodes, thus providing one relative constraint. The questio
whether a given set of bars is enough to rigidize a giv
structure constitutes a classical problem in applied ma
ematics, that of graph rigidity@16–18#. In statistical physics,
bonds~bars! are randomly present with probabilityp or ab-
sent with probability 12p, and one asks for the typical rigi
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properties of such structures. Upon increasing the densip
of present bonds, the system goes into the rigid phase, c
acterized by the existence of an extensive rigidly connec
cluster. The RP problem becomes fully equivalent to
wheng51. SP has a continuous transition in all dimensio
@1#. In two dimensions the RP transition is continuous but
a different universality class@19# from SP. In the mean field
~MF! limit, RP (g.1) has a first-order transition@20,21#.

The situation is reminiscent of the Potts model, whose M
transition is continuous forq52 and discontinuous forq
.2 @22,23#. Potts models in the presence of a field, and th
relation with percolation models, have been studied rece
because of possible links with the deconfining transition
QCD @24–26#. In the presence of a field, and for larg
enoughq, the Potts model has a line of first-order transitio
ending at a critical point@27,28#. This critical point appears
to be always in the Ising universality class.

Nonzero field values have been considered in scalar
colation studies previously@29–35#. A field may be intro-
duced in percolation by allowing for the existence of ‘‘gho
bonds’’ which are present with probabilityh and connect
sites directly to a solid background~or to ‘‘infinity’’ !. How-
ever, for any nonzero field there is no SP transition. RP
somewhat more interesting, as we will find out. In this wo
RP is studied in diluted random graphs of the Erdo¨s-Renyi-
type, with average connectivityg, in the presence of a field
h. Unlike SP, mean-field RP has, in the presence of a fiel
line of first-order phase transitions. This line ends at a criti
point with classical critical indicesa50, b51/2, g̃51, and
d53.

Some of the analysis in zero field is relevant for the
lated problem of bootstrap percolation~BP! @36–39#, also
known ask core@40# in the field of graph theory@41–43#. In
k BP @36#, all sites with less thank neighbors are iteratively
culled. What remains, if something, is thek core @40#; a
©2003 The American Physical Society04-1
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subgraph where all sites havek or more neighbors. Ing-RP a
site needs at leastg bonds in order to be attached to a rig
cluster. Thus the ‘‘infinite’’ rigid cluster is a subset of theg
core. In Sec. II B we will see that an even stronger condit
exists for rigidity: g-RP requires the existence of a (g11)
core @44#.

Our approach starts by deriving an equation of state
the ‘‘order parameter’’R(g,h), the probability that a ran-
domly chosen site belongs to the rigid cluster, as a func
of g, the average number of bonds impinging on a site,
h5gH, whereH is the applied field. We will callH or h
indistinctly the ‘‘field’’ variable. The equation of state, as
customary in these cases, is found to accept multiple s
tions. Stability analysis is not enough to single out a uniq
solution. Of central importance, in order to lift this multiplic
ity, are g r(g,h), the average number of ‘‘redundant’’ bond
per site~see later!, and nF , the average number of uncan
celed degrees of freedom per site. Their relevance reside
the fact that theymustbe continuous functions ofg. Requir-
ing thatnF ~or, equivalently,g r) be continuous is enough t
identify the physically correct solution.

This work is similar in spirit to previous treatments of R
in zero field on Bethe lattices@21#, i.e., networks where eac
site has exactlyz randomly chosen neighbors. Here we co
sider the effect of an external field and particularize to r
dom graphs of the Erdo¨s-Renyi-type@45#. The introduction
of a field appears to be much more tractable analytically
Erdős-Renyi graphs than on Bethe lattices, and this is
main reason why most of the results presented here are
Erdős-Renyi graphs. For these, we are able to derive an
lytic expression for the densitiesnF of uncanceled degrees o
freedom andg r of redundant bonds for arbitrary values
the field. Bethe lattices are discussed briefly in Appendix
In zero field, analytic calculations are also straightforwa
for Bethe lattices, and allow us to obtain, in an entirely a
lytic fashion, some of the results obtained by numerical
tegration in Ref.@21#. Bethe lattices with a field are als
discussed, however the calculations become rapidly cum
some in this case.

It is known that SP and Potts models are particular ca
of a more general Fortuin-Kasteleyn random-cluster mo
defined by a continuous parameterq @46,47#. SP can be ob-
tained as theq→1 limit of this random-cluster model and, i
this limit, the logarithm of the partition function coincide
with the average number of connected clusters. It seems
sible that a similar mapping might exists for RP as we
although it has not been found up to now. However it h
been proposed@48,21# that the number of uncanceled d
grees of freedomnF is a good ‘‘free-energy’’ candidate fo
RP in zero field. Wheng51, each connected cluster has o
uncanceled degree of freedom, so both definitions coinc
in this limit. We explore on this idea further in this work.

It is possible to establish a pedagogical parallel betw
the RP transition and a condensation transition. One ide
fies the coordination parameterg with an inverse tempera
ture b; the negative of the order parameterR plays the role
of the fluid volumeV ~it is also possible to identifyR with r,
the fluid density! @49# and the fieldH5h/g is the fluid pres-
sureP. Within this analogy, it is natural to argue that requ
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ing the continuity ofnF in order to identify the physically
correct solutionR in rigidity percolation is equivalent to re
quiring the continuity of the free energy~giving rise to the
Maxwell construction! in the statistical mechanics treatme
of condensation transitions at the MF level@50#.

It is shown in this work that the idea of identifyingnF
with a free energy for RP leads to consistent results in
presence of a field as well. In Sec. VI it is shown that~1! the
order parameterR is obtained as a derivative of the fre
energy with respect to the field,~2! the condition of stability
~Sec. III C! may be related to the positivity of a suitab
second derivative of the free energy, and~3! the continuity of
nF can be cast exactly in the form of Maxwell’s rule of equ
areas on the RP equivalent of aP-V diagram~which is the
H-R diagram, see Fig. 7!.

This work is organized as follows. The system under co
sideration is defined in Sec. II A, and its equation of state
derived in Sec. II B, establishing its connections with bo
strap percolation. In Sec. II C the field is introduced. Sect
III starts the analysis of solutions of the general equation
state, discussing stability and the existence of a critical po
The concept of redundant constraints is introduced in S
IV A and their density is calculated in Sec. IV B. This resu
is used in Sec. V to determine the valuegc where the first-
order transition takes place. In Sec. V B, the counting
constraints is done on the (g11)-rigid core in zero field.
Section VI discusses several consequences of identifying
density of uncanceled degrees of freedom with a free ene
and Sec. VII contains a discussion of the results. Bethe
tices are briefly considered in Appendix D.

II. SETUP

A. Randomly diluted graphs

We consider graphs made ofN sites~or ‘‘nodes’’! where
each of theN(N21)/2 pairs of distinct sites is connected b
a bond~or ‘‘edge’’! independently with probabilityp. This
defines@45# an Erdös-Renyi graph with average coordinatio
numberg5p(N21). In this workg will be taken to be of
the order of 1. For largeN, a site of this graph is connecte
to k other sites with Poissonian probabilityPk(g)
5e2ggk/k!.

As appropriate for rigidity percolation, each node of th
graph is regarded as a ‘‘body’’ withg degrees of freedom
For example, rigid bodies ind dimensions haved transla-
tional degrees of freedom plusd(d21)/2 rotational degrees
of freedom for a total ofg5d(d11)/2. In this work,g is
taken to be an arbitrary integer. Each present bond repres
one constraint, that is, removes one degree of freedom.
order to have a physical representation in mind, a bond
be thought of as a rotatable bar that fixes the distance
tween two arbitrary points belonging to the bodies it co
nects@51,15#. For the class of graphs that we consider,
most one bond is allowed for each pair of nodes.

As the number of present bonds grows, parts of this gr
will become ‘‘rigidly connected.’’ Rigid connectivity of a
subgraph means~this is our definition! that the total number
of degrees of freedom in the system cannot be further
duced by additional bonds connected between nodes of
4-2
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subgraph. Such subgraphs are customarily called ‘‘rigid c
ters.’’ A rigid cluster has no internal degrees of freedom le
When the coordinationg is large enough, the largest rigi
cluster encloses a finite fraction of the system’s sites,
rigidity is said to percolate. For lowg the system is in the
flexible, or floppy, phase, and there are no extensive r
clusters.

A rough estimate of the threshold for the appearance o
extensive rigid cluster can be obtained by equating the a
age number of constraints per site, which isg/2, to g. This
results in the so-called Maxwell estimate@13,52,48,21#,
gc

Maxwell52g. This estimate becomes exact in theg@1 limit
~Sec. V B!.

B. The equation of state in zero field

Let us now defineC to be the largest rigid cluster in th
graph, if one exists. A site inC will be said to be a ‘‘rigid
site.’’ Let R be the probability that a randomly chosen nodi
be inC. In order fori to be inC it is necessary and sufficien
that it be connected tog or more other nodesj in C. Our
definition of rigidity is thusrecursiveat this stage.

A site j is rigid and connected toi with probability pR.
Therefore i has exactlyk rigid neighbors with probability
( k

N21)(pR)k(12pR)N212k. For N large and definingx
5gR, the probabilityPk to have exactlyk rigid neighbors
may be written as

Pk~x!5e2xxk/k!, ~1!

showing that the numberk of rigid neighborsof a randomly
chosen site is a Poissonian variable with averagex5gR
5(k50

` kPk(x). Since a site must haveg or more rigid neigh-
bors in order to be rigid itself, we conclude thatR satisfies
the self-consistent equation

R5 (
k5g

`

Pk~gR!5Gg~gR!, ~2!

where we have defined

Gm~x!5 (
k5m

`

Pk~x!. ~3!

Bootstrap percolation, or k core

Let us now briefly discuss the related problem of bo
strap percolation@36# or k core @40#. We want to assess th
probability PBP(g11) that a randomly chosen sitei be part
of the (g11) core. Assume this is the case. By followin
one of its links, a neighborj is reached.j must have at leas
g other neighbors. We call these neighbors ofj, other than the
site i from which we arrived at it, the ‘‘outgoing’’ neighbor
of j. Each of these in turn must haveg or more outgoing
neighbors, and so on. More formally, let us define the pr
erty of g-outgoing connectedness (g-OC! in the following
~recursive! way: A site isg-OC if g or more of its outgoing
neighbors also are.
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On graphs of the Erdo¨s-Renyi-type, the probability to
have k outgoing neighbors is the same as that to havk
neighbors altogether, i.e.,Pk(g) @Eq. ~1!#. This is so because
links are independently present. LettingR̂ be the probability
that a site beg-OC, by the same reasoning as in the prec
ing section we conclude that a random site is connecte
exactlyk outgoingg-OC neighbors with probabilityPk(gR̂).
Thus R̂ satisfies the same self-consistent equation~2! as R
does in the RP problem withg degrees of freedom, i.e.,

R̂5Gg~gR̂!. ~4!

Note that by requiring that each site in a tree hasg or more
g-OC neighbors we ensure that all sites, except perhaps
the top one, have (g11) or more neighbors. The probabilit
PBP(g11) that the top site itself hasg11 or more neighbors
~which areg-OC! is then given by

PBP~g11!5Gg11~gR̂!5R̂2Pg~gR̂!. ~5!

This expression gives the density of the (g11)-BP infinite
cluster,@or (g11) core# at the point where it first appear
@36,41,43#. So one must first solve Eq.~4! in order to obtain
R̂ as a function ofg, and then use Eq.~5! to find PBP(g
11). Numerical results@53# show that Eq.~5! is exact for
largeN.

We see that the (g11)-core densityPBP(g11) is some-
what smaller thanR̂ wheneverR̂.0, while R̂ in turn satis-
fies the same equation as the densityR of rigid sites ing-RP.
Later in Sec. V B we will see that in zero field, whenev
there is ag-rigid cluster, it contains as a subset the (g11)
core.

C. Equation of state in the presence of a ghost field

Building on ideas first discussed by Essam@34#, we now
introduce a ‘‘ghost field’’H that couples to the order param
eter R in the following way. In addition to the ‘‘normal’’
bonds of our graph, we will have ghost bonds. Each gh
bond connects one randomly chosen site to a ‘‘rigid ba
ground’’ @54#, and providesoneconstraint, i.e., removes on
degree of freedom. The total number of ghost bonds in
system is by definitionNgH5Nh. Multiple occupation is
allowed, so that the probability for a site to haven ghost
bonds is Poissonian:Pn(h)5e2hhn/n!. ~See Appendix A for
a discussion of the differences between Poissonian and li
field definitions.!

If n<g ghost bonds are connected to a site, then this
has g2n degrees of freedom left. Otherwise ifn>g, this
site has no degrees of freedom left, i.e., it is rigidly attach
to the background. It is easy to see that allextensiverigid
clusters are rigidly connected to the background with pr
ability one, ifh.0. From now on, a site is said to be rigid
it is rigidly connected to the background, either direc
through ghost bonds, or indirectly through rigid neighbor

If a site hasn>g ghost edges connecting it to the bac
ground, then it is rigid. Otherwise ifn,g, it is rigid if it has,
in addition to thesen ghost bonds, (g2n) or more rigid
4-3
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neighbors. Thus using Eq.~1! we may write, in the presenc
of a field h5Hg,

R5 (
n5g

`

Pn~h!1 (
n50

g21

Pn~h! (
k5g2n

`

Pk~gR!. ~6!

After a simple resummation, this expression reads

R5Gg~gR1h!, ~7!

with Gg given by Eq.~3!. Equation~7! generalizes Eq.~2! in
the presence of a field, and is the equation of state for
problem.

The simplicity of Eq.~7! is one of the reasons leading u
to study this particular~Poissonian! definition of the field.
Other field definitions~see Appendix A!, for example, as-
suming that each site is rigidly attached to the backgro
with probability h, or other random graph structures such
Bethe lattices@21# ~see Appendix D! are also tractable with
the methods used here, but the algebra becomes more
plicated.

Clearly y5g(H1R) plays the role of a ‘‘Weiss field’’ in
the MF equation for a ferromagnet. By analogy we may th
identify g as the inverse temperature andH as the magnetic
field. It is illustrative to take notice of the similarities be
tween Eq.~7! and other MF equations. For the Potts mod
@55#,

m5Qq~bm1h!, ~8!

whereb is the inverse temperature,m is the magnetization
h5bH is the external field, andQq(y)5(ey21)/@ey1(q
21)#.

Note that wheng51 ~scalar percolation!, Eq. ~7! gives
G1(y)512e2y, the same as Eq.~8! for q51. This is of
course just a consequence of the known equivalence betw
scalar percolation and theq→1 limit of the Potts model
@46,47#.

However, the archetypal example of a first-order tran
tion with a two-parameter phase space is the condensa
transition@50#, described at the mean-field level by the v
der Waals equation. The reduced form of the van der Wa
equation can be written as

l5G„b~l1P!…, ~9!

whereG(y)527y2/(y18)2, P is the pressure,b is the in-
verse temperature, andl53r2 with r the number density.G
has the same general features asG andQ, namely, it starts at
zero, grows sharply, and saturates for large values of its
gument. Therefore all three systems give rise to the sa
phenomenology, including, of course, sharing the same~clas-
sical! critical indices at their critical points.

Within an analogy with a condensation transition, in t
RP problemg plays the role of an inverse temperature, wh
H5h/g plays the role of a pressure.
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III. ANALYSIS OF SOLUTIONS

In this section, the solutions of our equation of state~7!
are discussed. In order to obtainR(g,h) numerically for
giveng andh, one might, for example, iterate Eq.~7! until a
desired numerical accuracy is reached. This procedure
used in Refs@20,21#. However in this work the following
alternative procedure was preferred: givenh.0 fixed, and
for a sequence of values ofy.h, we evaluate

R5Gg~y!5Gg~x1h!,

g5~y2h!/Gg~y!5x/Gg~x1h!, ~10!

thus definingR(g,h) implicitly. In this way one obtains the
results displayed in Fig. 1. This procedure allows us to obt
all solutions of Eq.~7!, while the iterative procedure men
tioned above only provides the stable branches.

In zero field,R50 is a solution; g and ; g. If g is
large enough, nontrivial solutionsR.0 exist as well. Ifh
.0, one has on the other hand that there is at least
nontrivial solutionR.0 ; g.

In the SP case (g51), G1(x)512exp(2x). If h is non-
negative, Eq.~10! always has two solutionsR(g,h) for all
g.0. If h50 there is, in addition to the trivial solutionR
50, a nontrivial solution that is negative wheng,gc51
and becomes positive forg.gc51. Above gc one hasR
'(g21). In this case there is acontinuoustransition atg

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

R
(γ

,h
)

γ

g=1

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

R
(γ

,h
)

γ

g=2

FIG. 1. The densityR of rigid sites as given by Eq.~7! for g
51 ~scalar percolation, top! and g52 ~rigidity percolation, bot-
tom!. The field takes the valuesh50.0,0.1,0.20, . . . ,1.0. For h
50, R50 is a solution for allg in both cases. Forg52 the critical
field is hc50.287.
4-4
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51, a well known result for scalar percolation on rando
graphs@45#. If h.0, there are also two branches forR(g,h),
however only one of them is positive. The other branch
negative and therefore unphysical. Thus there is no trans
~Fig. 1! for h.0.

A richer behavior is found for the RP case (g.1), as
shown in Fig. 1 forg52. In this caseg, as given by Eq.
~10!, may no longer be a monotonous function ofy, and, for
this reason,R becomes a multivalued function ofg. In con-
trast to SP, whereR is multivalued but only one solution i
positive, here both are. This allows for the existence o
first-order transition. The physical considerations which le
to the identification of the correct transition point will b
discussed in Secs. III C and V.

A. Spinodal points

The condition thatg as given by Eq.~10! be stationary in
x5gR reads

Gg~x1h!2x
]Gg~x1h!

]x
50, ~11!

and has two solutionsx6
s (g,h) for all h smaller than a criti-

cal value h* (g). These two solutions in turn defineg6
s ,

which are turning points forR(g,h) ~see Fig. 2!. In the in-
terval g1

s ,g,g2
s , R(g,h) has three solutions, two o

which are stable as we show next. Therefore adiscontinuous
g-driven transition takes place whenh,h* (g). Right ath
5h* the transition becomes continuous~see Sec. III B!,
while for h.h* (g), R is a smooth function ofg and no
transition occurs.

The thresholdsg6
s can be identified asspinodal points, as

first discussed in Ref.@21#. The true rigidity percolation tran
sition happens at a valuegc(g,h) that lies in between the
spinodals, and which we analytically determine later
Sec. V.

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

R
(γ

,h
)

γ

γ+

γ-

FIG. 2. For allg.1, the order parameterR as given by Eq.~10!
becomes multivalued for small values of the fieldh. The branch
joining the spinodalsg6 ~dashed! hasdR/dg,0 and is thus un-
stable. The uppermost and lowermost branches~solid! are stable. In
this example,g52 and h50.15. For zero field the spinodalg2

goes to infinity and the branch 0<g<g2 collapses onto theR
50 solution, which is stable for allg.
05610
s
n

a
d

B. Critical point

1. Scalar percolation„gÄ1…

For g51 the critical field ish* 50. An additional condi-
tion for criticality is thatx/g be tangential toG(x), and has
a unique solutiong* 51 andR* 50. In the scalar case ther
is a continuous transition atgc51 @45#.

2. Rigidity percolation„gÌ1…

When g.1, the condition thatx/g be tangent toGg(y)
@Eq. ~11!# identifies the spinodal points, and is not enough
single out the critical point. However, whenh takes its criti-
cal valueh* , the spinodalsx6

s coalesce onto an inflexion
point. Thecritical point $h* ,g* ,R* % is thus defined by

]2Gg

]x2 U
x* ,h*

50, ~12a!

]Gg

]x U
x* ,h*

5
Gg~x* 1h* !

x*
5

1

g*
. ~12b!

For h.h* there is no phase transition. Using Eq.~7!, and
definingy5x1h, these two equations can be solved exac
The critical point turns out to be

y* 5g21,

g* 5$Pg21~g21!%215eg21~g21!!/ ~g21!g21,

R* 5Gg~g21!5e12g(
k5g

`

~g21!k/k!,

h* 5y* 2x* 5g212g* R* . ~13!

For g52 @56# one finds

g* 5e,

R* 5~e22!/e,

h* 532e. ~14!

For large g, and approximatingn!'(n/e)n(2pn)1/2, one
sees thatg* }g1/2, while h* ;g and thusH* ;g1/2. This
means that in the limitg@1 most constraints are field con
straints at the critical point.

3. Critical indices

The RP transition on random graphs is similar to oth
MF transitions with first-order lines, as discussed in S
II C. Thus it can be concluded that RP must have class
critical indicesb51/2, d53, andg̃51. For completeness
we show that this is indeed the case by deriving the criti
indices briefly in Appendix C.
4-5
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C. Stability analysis

Stability can be analyzed if Eq.~7! is interpreted as a
recursion relation,

Rt115G~gRt1h!, t50,1, . . . ,̀ , ~15!

for fixed g and h. AssumeR(g,h) is a fixed point of Eq.
~15!, i.e., R5G(gR,h). This fixed point is stable if

U]G~gR1h!

]R U
g,h
U5Ug]G~x1h!

]x U
x5gR

U,1. ~16!

SinceG8(y)5Pg21(y) we conclude that the stability cond
tion reads

gPg21~y!,1, ~17!

with y5x1h as defined previously.
A more useful form results if one notes that, ifR.0, Eq.

~16! is equivalent to requiring thatdR/dg.0. In fact,

dR

dg
5

dG

dx

dx

dg
5G8

d

dg
~gR!5G8S R1g

dR

dg D
⇒ dR

dg
~12gG8!5G8R ~18!

and sinceG8.0 ; x.0, we conclude that a nontrivial fixe
point R(g,h).0 of Eq. ~15! is stable if and only ifdR/dg
.0.

This condition has a simple physical meaning: increas
the average connectivityg should not decrease the rigid de
sity R. A similar stability condition holds for fluids, namely
that the coefficient of thermal expansion be positive.

1. Scalar percolation„gÄ1…

In zero field,R50 is a solution of Eq.~7!, thus a fixed
point of Eq.~15!, ; g. If g51, stability @Eq. ~17!# requires
that gP05ge2gR,1. Thus the trivial solutionR50 be-
comes unstable forg.1, where the nontrivial solution
~stable becausedR/dg.0, see Fig. 1! first appears. This
situation is typical of continuous transitions; the ordered
lution appears exactly at the point where the paramagn
solution becomes unstable.

Whenh.0 there is only one solution for Eq.~7!, and it is
stable for allg sincedR/dg.0 @Eq. ~18!#.

2. Rigidity percolation„gÌ1…

For g.1 the situation is more interesting, as seve
stable solutions of Eq.~7! can coexist. Ifh,h* , Eq. ~7! has
three solutions~see Fig. 2! in the rangeg2

s .g.g1
s . The

branch joining the two spinodal points can be discarded s
it is unstable~becausedR/dg,0). However the other two
branches~solid lines in Fig. 2! are stable so that there
coexistence of two stable solutions forg2

s .g.g1
s . Thus

the system undergoes ag-driven first-order transition some-
where between the spinodals. The precise pointgc at which
05610
g

-
tic

l

e

the system switches from one stable solution to the othe
uniquely defined by a continuity requirement, as we ela
rate later in Sec. V.

The h50 case is similar, however in this case the lowe
stable branch collapses onto the trivial solutionR50, while
the spinodalg2 goes to`.

IV. ZERO MODES, AND REDUNDANT AND
OVERCONSTRAINED BONDS

In this section the counting of uncanceled degrees of fr
dom and the useful notions of redundant and overconstra
bonds are discussed. These will be of central importanc
our subsequent treatment of the RP problem.

A. Definitions

We consider a graph made ofN sites, each withg degrees
of freedom, and for the moment assume thath50, i.e., there
are no ghost-field constraints. Each present bond remo
one degree of freedom from the system, unless it is aredun-
dant bond. A redundant bond~or constraint! is the one that
links two nodes which werealready rigidly connected, for
example, nodesi andj in Fig. 3. The addition of a redundan
constraint does not reduce the number of degrees of free
in the system. Thus the balance of degrees of freedom re

NF5Ng2E1Br , ~19!

whereNF is the number of uncanceled degrees of freed
@57#, E is the number of bonds in the graph, andBr is the
number of redundant bonds.

For an Erdo¨s-Renyi graph one haŝE&5gN/2. Defining
^Br&5g rN/2, the average densitynF(g) of zero modes per
site is written as

nF~g!5
^NF&

N
5g2

1

2
@g2g r~g!#. ~20!

FIG. 3. In this two-dimensional example, each node~circle!
represents a point that has two positional degrees of freedom, w
each bond fixes the distance between two points and thus prov
one constraint. The graph on the left still has three remaining
grees of freedom: two translations and one rotation. Bondi j ~right!
is a redundant bond, because it connects two nodes which w
already rigidly connected. After adding bondi j , the bonds that
provided the rigid connection betweeni and j becomeovercon-
strained ~thick lines!. Any one of these can be removed witho
altering the number of remaining degrees of freedom, which s
equals three. The graph on the right has one redundancy, bu
overconstrained bonds.
4-6
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Let us assume thatb is a redundant bond. This means th
its two end nodes are rigidly connected even ifb is removed.
Let Bb be the subset of bonds that, in the absence ob,
provide rigidity to its two end nodes. After addingb, any of
the bonds in$Bb1b% ~thick lines in Fig. 3! can be removed
without altering the total number of degrees of freedomNF .
The subset of bonds$Bb1b% is said to be overconstrained
From a physical point of view, the overconstrained bon
may be defined as those that carry an internal stress bec
of the addition of a redundant bondb that has a length mis
match.

Please notice the important difference between the n
ber of redundancies and the number of overconstrai
bonds: when adding a redundant bond~such asi j in Fig. 3!
the number of redundanciesBr always increases by exactl
one. However, the number of overconstrained bonds m
increase by more than one. In the example shown in Fig
the number of overconstrained bonds increases by 12.

We then conclude that, when addinganybond to a graph,
the number of redundanciesBr will either increase by one~if
the chosen sites were rigidly connected! or stay unchanged
~if not!, in which case the number of zero modesNF will
either stay unchanged or decrease by one. This implies
the densitiesg r of redundant bonds andnF of zero modes
must be continuous functions of the densityg of present
bonds. The density of overconstrained bonds, on the o
hand, need not be continuous.

Let us now discuss how the balance of degrees of freed
is modified by ghost-field bonds~Sec. II C!. If a site hasn
,g present ghost edges connecting it to the rigid ba
ground, then it contributes with (g2n) degrees of freedom
to Eq. ~19!. If on the other hand it is connected to the bac
ground byn>g ghost bonds, then this site has no degrees
freedom left to contribute to Eq.~19!. The effective number
geff(h) of remaining degrees of freedom contributed by
average site is thus

geff~h!5 (
n50

g

~g2n!Pn~h!5g@12Gg11~h!#

2h@12Gg~h!#, ~21!

whereGg is defined by Eq.~3!. Taking this result into ac-
count, in the presence of a fieldh, we now have that

nF~g,h!5geff~h!2 1
2 @g2g r~g,h!#. ~22!

Note thatnF andg r are trivially related through the additio
of a known function ofg andh. Therefore, the knowledge o
eithernF or g r provides exactly the same physical inform
tion about the system.

The importance of Eq.~22! is twofold. In the first place,
as discussed above,nF andg r must be continuous function
of g. A similar reasoning allows one to conclude that th
must also be continuous functions ofh. The continuity ofg r
andnF is a key property, and will be used later in Sec. V
select the physically correct solution of Eq.~7! whenever
indeterminacies arise. Second, in Sec. VI it will be argu
that nF can be identified with the logarithm of the partitio
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function for the RP problem, and the consequences of s
identification will be discussed. Although this identificatio
is not necessary for solving the RP problem, it provides
teresting additional insight into this problem, insofar it hel
making a link with thermodynamics.

B. Calculation of g r

We now show how the densityg r(g,h) of redundant
bonds is calculated. Obviously wheng50 there are no re-
dundant bonds, i.e.,g r(g50,h)50, so we can write

g r~g,h!5E
0

g]g r

]g U
h

dg, ~23!

where the integral is done along a path of constanth. In
Appendix B we show@58# that

g
]^Br&

]g U
h

5^Bov&, ~24!

where^Bov&g is the total number of overconstrained bonds
B. Consider two randomly chosen sitesi and j. As discussed
in Sec. IV, a bondbi j is overconstrained ifi and j are rigidly
connected to the background, even in the absence of
bond. On a random graph, this happens with probabilityR2.
Thus a bond is present and overconstrained with probab
(g/N)R2, and therefore the average number of overco
strained bonds iŝBov&5gR2N/2. We can now write Eq.
~24! as

]g r

]g U
h

5R2, ~25!

so that now Eq.~23! reads

g r~g,h!5E
0

g

R2~g,h!dg. ~26!

Note that, while Eqs.~23! and ~24! are exact for arbitrary
graphs, Eq.~25! only holds under the assumption that tw
neighboring sitesi and j are independently rigid with prob
ability R. Thus in deriving Eq.~26!, correlations have been
ignored. This is correct on random graphs of the type c
sidered here, but fails on finite-dimensional lattices.

It is not immediately obvious how Eq.~26! can be
integrated, since we do not have an explicit expression
R as a function ofg. However usingx5gR5y2h one can
write R2dg5Rdx2xdR5@R2(y2h)]R/]y#dy, where R
5Gg(y) as given by Eq.~7!. After integrating by parts,

g r5 H2E Gg~y!dy2~y2h!Gg~y!%U
y5h

y5x1h

. ~27!

Using Eq.~3!, Eq. ~27! can be integrated to give

g r5$~y1h22g!Gg~y!12gPg~y!%uy5h
y5x1h

5~y1h!Gg~y!22hGg~h!

12g@Gg11~h!2Gg11~y!#. ~28!
4-7
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CRISTIAN F. MOUKARZEL PHYSICAL REVIEW E68, 056104 ~2003!
This expression enables us to calculate the density of re
dant bonds analytically. In previous work on Bethe lattic
@21#, Eq. ~26! was solved in zero field by numerical integr
tion, using for this purpose the values ofR that result from
iteration of Eq.~2!. Although the algebra becomes slight
more complicated, the approach used here to calculateg r is
applicable to Bethe lattices as well. Later in Sec. V B
present some results for Bethe lattices.

1. The density of zero modes

Using Eqs.~7!, ~21!, ~22!, and~28! we can write

nF~g,h!5
g

2
~R221!1~h2g!~R21!1gPg~y!, ~29!

where y5x1h5gR1h5g(R1H). Because of Eq.~22!,
continuity of g r implies that ofnF .

2. A consistency check

In the limit g→N, all bonds are present and there are
remaining degrees of freedom, i.e.,nF→0. It is easy to
verify that Eq.~29! indeed satisfies this condition.

V. LOCATION OF THE TRANSITION POINT

A. The general case

The valuegc(h) where the transition takes place is univ
cally determined by the requirement thatg r be a continuous
function of g. In order to see how this works, imagine th
for a givenh,h* one letsh,y,` and calculatesg r(y,h)
@Eq. ~28!# andg(y,h) @Eq. ~10!#, thus obtaining a plot ofg r
vs g ~Fig. 4!. In doing so one finds thatg r describes a loop
~sometimes called a ‘‘Maxwell loop’’ in statistical mecha
ics!.

The existence of a crossing point implies that two valu
yA andyB exist such that

-0.5

0.0

0.5

1.0

9 10 11 12

R
, γ

r

γ

A

B

FIG. 4. The density of redundant bondsg r ~thick dashed! de-
scribes a Maxwell loop~dot-dashed! whose crossing point define
the location of the true transition. After discarding the unphysi
loop, the densityR of rigid sites~thick solid! jumps at the transition
betweenA andB, but g r is continuous. Shown is an example wi
g510 andh55.
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n-
s

o

s

$~y1h22g!Gg~y!12gPg~y!%uy5yA

y5yB50, ~30!

whereyA,B5gc(h)RA,B1h.
Equation ~30! cannot be solved analytically in genera

however it is easily solved numerically~by iteration! for
each value ofh andg, to obtaingc(g,h). In this fashion the
location of the coexistence line can be calculated to arbitr
precision ~Fig. 5!. At the transition pointgc(h) the order
parameterR jumps @Fig. 6~a!#, but the density of redundan
bondsg r is continuous@Fig. 6~b!#.

B. The case of zero field: Maxwell counting on the
„g¿1…-rigid core

For zero field one has thatR50 for g,gc . Equation~26!
then implies thatg r50 for g<gc . At the transition point
gc , a rigid cluster suddenly appears that contains a frac
Rc of the graph. In zero field, Eq.~30! reads

~xc22g!Rc12gPg~xc!50, ~31!

where all quantities are evaluated in the rigid phase (R andy
are zero in the floppy phase!.

Even this simpler equation does not admit analytic tre
ment. However, very precise solutions can be obtained
merically as described already. Table I contains some
amples.

Please note thatgc is smaller than the value 2g needed
for global balance of constraints and degrees of freed
However, all degrees of freedom belonging to siteson the
rigid cluster ~which appears suddenly at the transition poi!
are by definition canceled out by constraints. Moreov
since for zero field the number of redundant constraints
site is exactly zero at the transition~see Fig. 6!, one con-
cludes that the average number of bonds per site, for site

l

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

h/
γ

1/γ

g = 16, 8, 4, 2

FIG. 5. Coexistence lines~lines of first-order phase transitions—
dashed! in the space defined by the two intensive parameters
rigidity percolation, the fieldH5h/g and the ‘‘temperature’’ 1/g,
for several values of the numberg of degrees of freedom per site
The critical point, defined by Eq.~13!, is indicated with an asterisk
For all g>2, i.e., for rigidity percolation, this critical point ha

classical indicesa50, b51/2, g̃51, andd53. The caseg51
~scalar percolation, not shown! has its critical point atg51 and
H50, and belongs to adifferent universality class, witha521,

b51, g̃51, andd52.
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RIGIDITY PERCOLATION IN A FIELD PHYSICAL REVIEW E 68, 056104 ~2003!
the rigid cluster, must be exactly 2g at gc . The conclusion is
then that sites on the rigid cluster have more bonds t
average.

This observation may be formalized in the following wa
Using gR5x, R5(k5g

` Pk(x) with Pk(x)5e2xxk/k!, and
xPk(x)5(k11)Pk11(x), condition~31! can be written as

(
k5g11

`

~2g2k!Pk~x!50, ~32!

which in turn implies

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

R
(γ

,h
)

γ

g=2

-0.1

0.0

0.1

0.2

0.0 1.0 2.0 3.0 4.0 5.0 6.0

γ r
(γ

,h
)

γ

FIG. 6. ~a! The final values for the density of rigid sitesR ~thick
lines!. The transition pointgc(h), whereR undergoes a discontinu
ous jump, is determined by the physical requirement that the d
sity of redundant bondsg r ~b! be continuous. In this exampleg
52 and~from right to left! h50.0,0.1,0.20, . . . ,1.0. Forg52 the
critical field is hc50.287.

TABLE I. The rigidity percolation threshold coordinationgc ,
and the jump in the rigid cluster densityRc on Erdös-Renyi random
graphs with zero field, obtained from solving Eq.~31! for several
values ofg, the number of degrees of freedom per site.

g gc(g) DiscontinuityRc

2 3.58804747296539 . . . 0.74915378510250 . . .
3 5.7549256115462 . . . 0.8812398370507 . . .
4 7.84295819428849 . . . 0.933538491167168 . . .
5 9.89551361859910 . . . 0.959638549916489 . . .
6 11.9288724790262765 . . . 0.974275720961391 . . .
→` 2g 1.0
05610
n

(
k5g11

`

kPk~x!

(
k5g11

`

Pk~x!

52g. ~33!

This sum counts the number of rigid neighbors for sites
the (g11)-rigid core, that is, the subgraph of the rigid clu
ter that has minimum coordination (g11). Equation~33!
means that the (g11)-rigid core has an exact balance
degrees of freedom.

Clearly, the rigid cluster may also contain sites not in t
(g11)-rigid core. When these are considered, it is poss
to see that the balance of constraints and degrees of free
is still respected.

The case of large g

An analytic solution of Eq.~31! is possible~though some-
what trivial! in the g@1 limit. In this casePg→0 andRc
→1, i.e., there is a jump fromR50 to R51 at the transition
point. Plugging these observations into Eq.~31! one gets, for
zero field,

gc52g, g@1. ~34!

This means that the rigid transition happens exactly at
point where global balance between constraints and deg
of freedom is attained. In other words, atgc Maxwell count-
ing is exact on the rigid cluster for allg, while for g@1 it is
globally exact as well.

VI. RELATION BETWEEN nF AND A FREE ENERGY

In this section, the consequences of making the iden
cationnF→(ln Z)/N are explored. It has been shown som
time ago that SP can be mapped onto theq→1 limit of the
Potts model@46,47#. This mapping allows one to draw
parallel between an equilibrium thermodynamic transiti
~Potts! and percolation, which may be described as a pur
geometric transition. One of the outcomes of this equi
lence is the identification of the total number of clusters
percolation as the logarithm of the partition function for t
resulting Potts model. The existence of this mapping has
profound impact on our understanding of scalar percolati
e.g., by allowing the exact calculation of percolation critic
indices in two dimensions@2#. No equivalent mapping ha
been found for RP yet. However it has been sugges
@48,21# that a possible generalization for the free energy
RP for zero field is the total number of remaining degrees
freedom~zero modes orfloppy modes!. In the g51 case of
RP each cluster has one remaining degree of freedom,
the SP result is recovered.

In Sec. IV it was shown thatnF ~equivalentlyg r) has to
be continuous. This was used in Sec. V to locate the poingc
where the first-order transition happens. ThusnF plays a role
similar to that of the Gibbs free energy, which is also a co
tinuous function of its intensive parameters. In this sect
we add further evidence supporting the identification ofnF
as the logarithm of the ‘‘partition function,’’ or free energ

n-
4-9
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CRISTIAN F. MOUKARZEL PHYSICAL REVIEW E68, 056104 ~2003!
for the RP problem on random graphs. We demonstrate
the ansatzZRP}eNnF is consistent also in the presence o
field, and show how several thermodynamic quantities re
from derivatives of this free energy.

In Appendix it is shown that the derivatives ofnF are

]nF

]g U
h

5
1

2
~R221!, ~35a!

]nF

]h U
g

5R21. ~35b!

As expected, the order parameterR results form deriving the
logarithm of the partition function with respect to the fiel
like parameter, up to a constant shift.

From Eqs.~35! we furthermore obtain

]nF

]g U
H

5
1

2
~R221!1H~R21!, ~36a!

]nF

]H U
g

5g~R21!. ~36b!

A. Maxwell’s rule of equal areas

The continuity requirement~30! employed in this work to
locate the true transition pointgc is analogous to the condi
tion that the free energy be continuous, as noted in prev
work @21#. The continuity of an appropriate thermodynam
potential is discussed in elementary statistical mecha
textbooks in connection, for example, with van der Waa
equation@50,59#, where it is used as a criterion to locate t
transition. The continuity condition for our RP problem
written in general as

E
A

B

dnF50, ~37!

whereA and B are the two phases that coexist at the fir
order transition~see Fig. 4!. Clearly Eq.~30! is the particular
case of Eq.~37! for which the integration is done along
path of constant field. Choosing a pathA→B on whichg is
constant instead, it is easy to put Eq.~37! in the form of the
famous Maxwell’s ‘‘rule of equal areas.’’ Starting from

05E
A

B]nF

]h U
g

dh, ~38!

where the integral is done along an ‘‘isotherm’’~a line of
constantg). After using Eq.~35b! and integrating by parts
this reads

h~RB2RA!5E
A

B

h~R,g!dR, ~39!

whereh(R,g)5Gg
21(R)2gR.

Equation~39! is equivalent to the conditionP(VB2VA)
5*A

BP(V,T)dV for a fluid, i.e., Maxwell’s rule. Figure 7
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serves to illustrate the fact that the areas above and below
horizontal coexistence line are equal, as Eq.~39! requires.

B. Energy, entropy, and work

In the following we will assume thatnF @Eq. ~29!# is the
logarithm of the partition function, i.e.,nF52g f , with f a
free-energy density andg51/T the inverse temperature. Th
energy densitye is then

e52
]nF

]g U
H

5
1

2
~12R2!1H~12R!. ~40!

The entropy per sites turns out to be

s52
] f

]T U
H

5nF1ge5g@Pg~y!2~R21!#. ~41!

From the first law of thermodynamics, and using Eqs.~40!
and ~41!, we conclude that, in an infinitesimal transform
tion, the ‘‘work’’ done by the system against the environme
is:

dw5dq2de5
1

g
ds2de5

1

g

]nF

]H
dH5~R21!dH.

~42!

The analog of the constant-pressure heat capacity for a
is in our case the constant-field heat capacity

cH52g
]s

]g U
H

52g2
]e

]gU
H

5
y2Pg21~y!

12gPg21~y!
, ~43!

which is non-negative by Eq.~17!, and diverges as
ug2g* u21 at the critical point. This of course should not b
taken to mean thata51, since it is the constant-density he
capacity what definesa ~For a discussion, see Ref.@60#.!
The constant-field heat capacitycH is expected to diverge
with the same exponentg̃ as the susceptibility, unless th
system has certain symmetries, which is the case for
Ising model, but not for RP.

The analogous of the ‘‘constant-density’’ heat capacity

cR52g
]s

]g U
R

, ~44!

which is zero and thusa50.

C. Clausius-Clapeyron equation

Let D f 521/gDnF521/g„nF(B)2nF(A)… be the free-
energy difference between the two phases in the coexiste
region. This is a function of the temperatureT51/g and the
field H5h/g. Following standard texts@61#, we write

]H

]T U
D f

52

]D f

]T U
H

]D f

]H U
T

52
Ds

DR
, ~45!
4-10
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RIGIDITY PERCOLATION IN A FIELD PHYSICAL REVIEW E 68, 056104 ~2003!
where the derivative on the left-hand side is evaluated on
line of constantD f . Using Eq. ~41! one can writeDs
5g(DPg2DR). On the coexistence line,D f 50 so
Dsucoex5gDeucoex and, using Eq. ~40! we have that
Dsucoex52hDR2g/2D(R2)52DR@(yA1yB)/2#. Thus the
Clausius-Clapeyron equation for the RP problem can be w
ten as

]H

]T U
coex

5
yA1yB

2
. ~46!

Since on approach to the critical point,y→y* 5g21 @Eq.
~13!#, we conclude that the coexistence line reaches the c
cal point with slope (g21) in the H-T plane ~see Fig. 5!.
Equivalently by a simple change of variables one can w
Eq. ~46! as

]h

]g U
coex

52
RA1RB

2
, ~47!

implying that the coexistence curve approaches the crit
point with slope2R* in the h-g plane.

VII. DISCUSSION

The rigidity percolation problem withg degrees of free-
dom per site has been considered on Erdo¨s-Renyi graphs
with average coordinationg. An external fieldh is intro-
duced by connecting each site to a rigid background,
‘‘ghost site,’’ with a certain probability that depends onh as
described in Sec. II C. The resulting equation of state~7! for
the densityR of sites that are rigidly connected to the bac
ground undergoes a first-order phase transition on a ‘‘co
istence line’’gc(h). This line ends at a critical point~Fig. 5!
with classical exponentsa50, b51/2, g̃51, and d53.
For comparison, the critical point of scalar percolation~the
case ofg51) is located ath50 and has different critica
exponents:a521, b51, g̃51, andd52 @1#. Therefore in
the MF approximation, scalar and rigidity percolation are
different universality classes. In two dimensions, a sim
conclusion is reached by numerical means@48,15# where
both transitions are continuous in zero field.

It has been recently argued@62# that for certain spin sys
tems, the existence of a discontinuous transition in the
approximation is enough to ensure that, in finite space
mensionsd, there is a discontinuous transition ifd is large
enough. If this result holds for RP, one would expect to se
discontinuous transition in zero field ford ~and perhapsg)
large enough. Up to now, extensive numerical simulatio
for RP have been performed only in two dimensio
@15,48,52,63#. Except for pathological cases where the tra
sition happens at zero dilution@15#, it seems that the transi
tion is continuous for allg in two dimensions. Large scal
simulations are still needed to clarify this issue.

On Cayley trees with a boundary,g-RP is closely related
to (g11)-BP @36,20#. Both percolate at the same densityp
of present bonds, although with different spanning clus
densities on trees. On random graphs, which have the l
structure of a tree but no boundaries, thek-core transition
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stays unchanged, but the RP transition is delayed to largp
values @20#. We have explicitly shown that, at the critica
concentrationgc where the rigid cluster first appears, it ha
an exact balance of degrees of freedom, i.e., it has exacg
bonds per site. This condition is satisfied both on the wh
rigid cluster and on its (g11)-rigid core. However globally
the system has lesser bonds than needed to attain this
ance, meaning that the rigid cluster is selectively made ou
sites with more bonds than average.

In previous work on Bethe lattices in zero field@21# it was
suggested that the numbernF of uncanceled degrees of free
dom is a free energy for the RP problem. For SP (g51) this
result holds exactly, being one of the outcomes of
Fortuin-Kasteleyn random-cluster model@46,47#, which con-
tains SP and the Potts model as particular cases. For
however, this identification only has the status of a plausi
ansatz. This ansatz was used recently to predict some
modynamic properties of chalcogenide glasses@64#, for
which the RP transition has been shown to be relev
@65,66,11,14#.

Some of the reasons to believe that this identificat
might be correct in general are~a! the fact thatnF must be
continuous at the discontinuous RP transition and~b! the fact
that for g51, nF is the number of connected clusters p
site, so the Fortuin-Kasteleyn result for SP is recovered
actly. In this work we have shown that, in the presence o
properly defined fieldh, the order parameterR can be ob-
tained as a derivative of the free energy with respect toh,
thus adding further support to the belief that this identific
tion is correct.

Under the assumption that lnZ5NnF , the entropy per
site s can be derived. The resulting expression~41! was
found to depend on the order parameterR alone. This prop-
erty is shared by other MF systems, for example, the Is
ferromagnet.

On the pedagogical side, we have attempted to situate
discussion in terms of the parallel between the RP transi
in a field and a condensation transition. Since only topolo
cal ~connectivity! properties are important for RP, it can b
said that, in a sense, RP in a field is a sort of ‘‘geome
condensation transition.’’ Figure 7 illustrates the similariti
between both transitions. However a closer match is p
sible. Comparing Eq.~7! to Eq. ~9! one notes that, in a MF
condensation transition,l}r251/v2 plays the role of the
order parameterR in RP. From this point of view, the analo
of volume in RP would be 1/R1/2. The analog of aP-V plot
is shown in Fig. 8. Note however that, within this definitio
of volume, P(V) doesnot satisfy Maxwell’s rule of equal
areas,*A

BV(P)dP50.
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APPENDIX A: ALTERNATIVE DEFINITIONS OF FIELD

Two different ways to introduce a field have been used
the percolation literature. We will call them the ‘‘linear
@29,32,33,35# and the ‘‘Poissonian’’@30,31,34# fields. The
linear definition states that each site may be either conne
or not to infinity ~or the background! by a ghost bond, with
probabilitiesh̃ or 12h̃, respectively. In the Poissonian de
nition, each site can be connected to the background bn
50,1,2, . . . ,̀ ghost bonds, and the probability to haven
ghost bonds isPn(h)5e2hhn/n!. In SP each site has on
degree of freedom, so all that matters is whether the sit
free from ghost bonds or not. In this case, both definitio
are formally equivalent and related through a change of v
ables h̃512e2h. However, note that it is the Poissonia
definition which allows the most natural connection w
thermodynamics, in the sense that it plays the exact role
magnetic field in spin systems, when the number of clus
free from ghost bonds is identified as the free energy@34#.

In the case of RP (g.1), the Poissonian definition stay

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8 1.0

H
=

 h
/γ

1-R

FIG. 7. This plot of the fieldH vs the order parameterR for
rigidity percolation (g52 in this example! is the equivalent of a
P-V diagram for fluids. Shown are the isotherms~solid lines! along
which the coordination numberg is constant. The thick dashed lin
delimits the ‘‘coexistence’’ region, and was obtained by solving E
~39! numerically. The areas delimited by the thin dashed lines ab
and below the~solid! horizontal coexistence line are equal.
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Volume = (1/R)1/2

FIG. 8. Illustration of the similarities between RP and a cond
sation transition. In this plot,H5h/g is taken to be the analog o
pressure and 1/R1/2 the analog of volume. The data are the same
shown in Fig. 7.
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unchanged, but the linear definition has to be modifi
slightly. A single ghost bond is not enough to rigidize a si
but one may generalize the definition by saying that a sit
either connected or not to the background byg ghost bonds,
respectively, with probabilitiesh̃ and 12h̃. Within the linear
definition, ghost constraints are binary variables, that is, t
may be in one of two states. In the Poissonian definition
the other hand, each site can be in one ofg11 states~there
is no difference whatsoever between havingg and more than
g ghost constraints, so all these can be regarded as a s
state!. In this work we have chosen to use the Poisson
definition, mainly because it considerably simplifies calcu
tions.

APPENDIX B: DERIVATIVES OF THE NUMBER OF
REDUNDANT BONDS

Let F(B) be an arbitrary function of the set of prese
edgesB of a graphG, and letP(B) be the probability to have
edge setB. The average ofF is defined as

^F&5(
$B%

P~B!F~B!, ~B1!

where($B% is a sum over all configurations of present edg
If each edge is independently present with probabilityp

and absent with probability 12p, then clearly

Pp~B!5puBu~12p! uBmaxu2uBu, ~B2!

whereBmax is the edge set of maximum possible cardinali
We now writep5p1p2 with 0<p1 ,p2<1. This can be

realized by assuming that two types of bonds are indep
dently present with probabilitiesp1 andp2 respectively, and
that in order for an edge to be ‘‘active,’’ both types of bon
must be present on that edge.F is now a function of active
bonds only, which are present with probabilityp1p2, so that
one can write

^F&p1p2
5(

$B%
Pp1

~B! (
$B8%#B

Pp2
~B8!F~B8!

5(
$B%

Pp1
~B!S~p2 ,B!. ~B3!

Note thatPp2
(B8) has a factorp2 for each present bond in

configurationB8, and a factor 12p25q2 for each bond inB
which is absent inB8. Factors associated with bonds not inB
can be summed out to give one and therefore need no
considered. Thus ifuBu is the number of present bonds
configuration B and uB8u the number in B8, Pp2

(B8)

5p2
uB8uq2

uBu2uB8u .
Now let p2→1. In this case we can expandS(p2 ,B) in

powers of q2. The zeroth-order contribution comes fro
B8[B, the first-order contribution from theuBu configura-
tions B8 which have exactly one bondb less thanB, etc.:

.
e

-

s
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S~p2 ,B!5p2
uBuF~B!1q2p2

uBu21 (
bPB

F~B2b!

1q2
2p2

uBu22 (
b,b8PB

F~B2b2b8!1•••,

~B4!

where we have writtenB2b to denote the result of deletin
bondb from B. To first order inq2,

S~p2 ,B!5F~B!1q2 (
bPB

@F~B2b!2F~B!#, ~B5!

therefore

^F&p1p2
5^F&p1

1q2K (
bPB

@F~B2b!2F~B!#L
p1

.

~B6!

Taking derivatives with respect top2 and lettingp251 one
finally finds that, for arbitraryF,

p
]^F&
]p

5K (
bPB

@F~B!2F~B2b!#L . ~B7!

Equation ~B7! generalizes previous results of Coniglio
Ref. @67#, and is the tool we use in this section to deri
some important relations.

Consider now the case in whichF5Br(B), the total num-
ber of redundant constraints. In order to calculate the der
tive of Br with respect top, we note that when removing
bond b from a configurationB of present bonds, the tota
number of redundant constraints will be reduced by on
and only if b is overconstrained. Otherwise ifb is not over-
constrained,Br remains unchanged by the removal ofb.
Equation~B7! then implies that

p
]^Br&

]p
5g

]^Br&
]g

5^Bov&, ~B8!

where^Bov& is the average number of overconstrained bo
in B.

A calculation of the field derivative of̂Br& requires some
additional considerations. Equation~B7! was derived under
the assumption that each edge is independently present
some fixed probability, while our definition of ghost field
Sec. II C implies that each site can haveany numbern of
ghost constraints with Poissonian probabilityPn(h)
5e2hhn/n!. We can represent this Poissonian process i
way that enables us to use Eq.~B7! as follows. We assume
that each site hasM@h slots connecting it to the back
ground, and that each slot is occupied byone ghost edge
with probability ph5h/M . For largeM, the probability to
haven ghost edges on a site isPn(h), so one has a realiza
tion of the Poissonian distribution. This equivalent syst
has a total ofNM ghost slots, each occupied by a ghost bon
with a small probabilityph , so we can now use Eq.~B7!.
05610
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Eliminating a present ghost edge reduces the numbe
redundant constraints by one if both the following conditio
are satisfied:~a! the remaining constraints that this site h
are enough to rigidize~i.e., kg1kh>g) and ~b! the remain-
ing ghost constraints that this site has are not enough
rigidize on their own~i.e., kh,g). The joint probability for
these two conditions to be satisfied is

(
j 50

g21

Pj~h! (
k5g2 j

`

Pk~x!

5 (
j 50

g21

Pj~h!2 (
j 50

g21

Pj~h! (
k50

g2 j 21

Pk~x!

5R~g,h!2R~0,h!5R2Rh , ~B9!

where we have definedRh5Gg(h) as the density of rigid
sites in the presence of the fieldh for a graph with no edges
(g50). The total number of ghost slots isNM and thus the
total number of present ghost bonds which upon remo
produce a change in the number of redundant constrain
on average

NM
h

M
~R2Rh!. ~B10!

Equation~B7!, with ph5h/M , now implies that

]^Br&
]h

5N~R2Rh!. ~B11!

Using ^Br&g5g rN/2 one then has

]g r

]h
52~R2Rh!. ~B12!

Checking derivatives ofg r

It is a trivial exercise to show thatg r , as given by Eq.
~28! has the right derivatives, i.e., satisfies

]g r

]g
5R2 ~B13!

in agreement with Eq.~25!, and

]g r

]h
52$R2Rh%, ~B14!

in agreement with Eq. ~B12!. Now since geff5g@1
2Gg11(h)#2h@12Gg(h)# one has that]geff /]h5Gg(h)
215Rh21. Therefore the derivatives ofnF @Eq. ~22!# are

]nF

]g
5

R221

2
,

]nF

]h
5R21. ~B15!
4-13
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APPENDIX C: DERIVATION OF CRITICAL INDICES

1. Scalar percolation„gÄ1…

ExpandingR5G1(y) aroundy* 5g* R* 1h* , and tak-
ing into account the conditionG18(x* )51/g* 51 ~Sec. III B!
one hasR'Dy21/2(Dy)2, with Dy5y2y* . The critical
point is aty* 50 so one can write, to second order inDy
5y5gR1h,

R5gR1h2
~gR1h!2

2
. ~C1!

For h50 this givesR'2(g21) sob51.
On the critical isothermg51 one hasR'R1h21/2(R

1h)2. For small h this reads 2h'(R1h)2'R2, or R
'h1/2, from whichd52 results.

The susceptibilityx5]R/]huh* diverges on approach t
the critical point asx}(Dg)2g̃. Deriving Eq.~7! one gets

]R

]h
5

Pg21

12gPg21
, ~C2!

and recalling thatg* 5@Pg21(y* )#21 we find that x

}(Dg)21, or g̃51.

2. Rigidity percolation „gÌ1…

In this case the critical point is an inflexion point ofGg ,
thus we need to expand to third order~this is in fact the
reason why the universality class is not the same as for!.
In doing this, Eqs.~12a! and ~12b! imply that, for y'y* ,

R'R* 1
Dy

g*
1O„~Dy!3

…, ~C3!

with Dy5y2y* andy* 5g* R* 1h* . The coefficient of the
O„(Dy)3

… term is nonzero. FurthermoreDy5Dh1g* DR
1RDg, and Eq.~C3! can be rewritten as

g* R5g* R* 1x2x* 1Dh1O„~Dy!3
…⇒RDg1Dh

5O„~Dy!3
…. ~C4!

On the critical isotherm (Dg50) we thus have thatDh
;(g* DR1Dh)3⇒DR'(Dh)1/3, sod53.

The exponentb is defined by the jumpJR that the order
parameter suffers on the coexistence line.JR behaves aseb

for e→0, wheree.0 parametrizes the coexistence line a
e50 on the critical point. Equivalently@50#, b may be de-
fined by the shape of the coexistence region in aP-V dia-
gram, or its equivalent~see theH-R diagram of Fig. 7!. The
coexistence region widens asuDTub below T* . Figure 7
shows a parabolic maximum, suggestingb51/2. Neverthe-
less we derive this result explicitly in the following.

Equation~C3! @which approximates Eq.~7! in the neigh-
borhood of the critical point# has three solutionsRA,R0
,RB for all $h,g% on the coexistence line. The discontinui
we want to calculate isJR5RB2RA . The Claussius-
Clapeyron relation~47! implies that, close to the critica
point, the coexistence line is defined byDh52R* Dg.
05610
Plugging this result back into Eq.~C3! and eliminating the
solutionR5R* one finds that the other two solutions beha
asDR}(Dg)1/2, or b51/2.

The derivation ofg̃51 in the preceding section holds fo
RP as well, thusg̃51 also here. Note that Rushbrooke
(a12b1g̃52) and Griffith’s (a1b(d11))52) relations
are satisfied witha50, and this is consistent with the fac
that the constant-R specific heat~44! is zero.

APPENDIX D: BETHE LATTICES

A graph where each site has exactlyz randomly chosen
neighbors is topologically equivalent to a Bethe lattice, e
cept for finite-size corrections. When this system is random
diluted, one obtains what is called ‘‘random bond model’’
Ref. @21#, in which each of thez bonds on a site is presen
with probabilityp. In zero field, the densityR of rigid sites is
defined by@20#

R5(
j 5g

z

Qj
(z)~x!, ~D1!

wherex5pT, Qj
(z)(x)5( j

z)xj (12x)z2 j , and T satisfies the
recursive equation

T5(
j 5g

z21

Qj
(z21)~x!. ~D2!

This last equation admits multiple solutions, so the contin
ity of the density of redundant bonds must be invoked
order to determine the transition point, as first discussed
Ref. @21#. The density of redundant bondsr (p) is @21#

r ~p!5E
0

p

T2dp512
2g

z
2E

p

1

T2dp. ~D3!

Using the same procedure that was used for Erdo¨s-Renyi
graphs in the rest of this work, one can exactly integrate
last condition and conclude that, for zero field, the transit
point pc is determined by

(
j 5g11

z

~ j 22g!Qj
(z)~xc!50. ~D4!

The transition condition~D4! gives rise to a polynomia
equation which is easily solved for small values ofg andz.
For g52 andz55 the corresponding quadratic equation r
sults inpc50.834 842 34. Forg52 andz56 a cubic equa-
tion is obtained, and its solution ispc50.656 511 134. This
last value is consistent with but more precise thanpc
50.656 as obtained in previous work@21# using numerically
exact matching algorithms for RP@51,68#.

Because Eq.~D2! has a different structure from Eq.~2!, a
Poissonian field as defined in Sec. II C does not seem
equate for this system. In practice, one finds that the eq
tions forR in the presence of a Poissonian field cannot be
in a simple closed form, as is the case of Eq.~7! for Erdös-
Renyi graphs. One may be tempted to try a ‘‘binomial’’ fie
4-14
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definition, in which each site hasn ghost bonds to the back
ground with probabilityQn

(z21)(h), however the resulting
expressions do not simplify either. The simplest choice
pears to be the linear field discussed in Appendix A, in wh
each site is rigidly attached to the background byg con-
straints with probabilityh, and free with probability 12h. In
the presence of a linear field one has

T5h1~12h!(
j 5g

z21

Qj
(z21)~x! ~D5!

and
.

y,

ys

or

m

05610
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R5h1~12h!(
j 5g

z

Qj
(z)~x!, ~D6!

while the density of redundant bonds reads

r ~p,h!5E
0

p

T2dp512
2g

z
~12h!2E

p

1

T2dp, ~D7!

which can again be integrated exactly. The overall results
qualitatively the same as for Erdo¨s-Renyi graphs, although
the resulting analytic expressions are by far less elegant
aul
,
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