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Rigidity percolation in a field
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Rigidity percolation withg degrees of freedom per site is analyzed on randomly dilutedsERbmyi graphs,
with average connectivity, in the presence of a field In the (y,h) plane, the rigid and flexible phases are
separated by a line of first-order transitions whose location is determined exactly. This line ends at a critical
point with classical critical exponents. Analytic expressions are given for the densiti@ uncanceled
degrees of freedom ang of redundant bonds. Upon crossing the coexistence #ipendng are continuous,
although their first derivatives are discontinuous. We extend, for the case of nonzero field, a recently proposed
hypothesis, namely, that the density of uncanceled degrees of freedom is a “free energy” for rigidity percola-
tion. Analytic expressions are obtained for the energy, entropy, and specific heat. Some analogies with a
liquid-vapor transition are discussed. Particularizing to zero field, we find that the existencg6fla ¢ore
is a necessary condition for rigidity percolation wgllegrees of freedom. At the transition poipt, Maxwell
counting of degrees of freedom is exact on the rigid cluster and onghel] rigid core, i.e., the average
coordination of these subgraphs is exactty, 2lthoughy,, the average coordination of the whole system, is
smaller than 8. vy, is found to converge to@for largeg, i.e., in this limit Maxwell counting is exact globally
as well.
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[. INTRODUCTION properties of such structures. Upon increasing the depsity
of present bonds, the system goes into the rigid phase, char-

Scalar percolatiofSP [1,2] is a paradigm for the geo- acterized by the existence of an extensive rigidly connected
metric phase transition that takes place on an initially disconeluster. The RP problem becomes fully equivalent to SP
nected lattice of pointlike sites when the dengitgf present  wheng=1. SP has a continuous transition in all dimensions
bonds is continuously increased. At the percolation ppint [1]. In two dimensions the RP transition is continuous but in
the system becomes connected on a macroscopic scale. Thisifferent universality clasl9] from SP. In the mean field
may mean that transport can happen across the sys@m (M) limit, RP (g>1) has a first-order transitior20,21].
ductivity, fluid flow), or that the system becomes correlated The situation is reminiscent of the Potts model, whose MF
on macroscopic scales, i.e., ordered. It is in fact possible tQ4nsition is continuous fog=2 and discontinuous foqg
describe ma_gnetic transitions in terms of the percolatio_n 0&2 [22,23. Potts models in the presence of a field, and their
properly d_e_fmed clusterg3—3). I_3ecause of_the gen.erahty relation with percolation models, have been studied recently
and simplicity of the concepts involved, this paradigm ha ecause of possible links with the deconfining transition in

found multiple applications in sciencgl,6,2,7. In most :
cases, the physical variables attached to sites are scalars, i.g.(,:D [24-24. In the presence of a field, and for large

each site has one associatietyree of freedom enoughq, the Potts model has a line of first-order transitions

A generalization of this paradigm considers the case iﬁanding ata critical po_inEZ?,Zﬂ. Thi_s critical point appears
which there is more than one degree of freedom per site, an§ P& always in the Ising universality class.
has been termed rigidity percolatidRP) [8—15]. In g-RP, Nc_mzero fI§|d valugs have been co_nS|dered in spalar per-
each site of a lattice hag degrees of freedom, and each colation studies previousl}29-35. A field may be intro-
present bond eliminates one relative degree of freedom. THéuced in percolation by allowing for the existence of “ghost
most commonly invoked application of RP deals with thebonds” which are present with probability and connect
statics of structures. Consider, for example, the problem ogites directly to a solid backgrour(dr to “infinity” ). How-
bracing aframeworkin three dimensions, i.e., rigidly con- ever, for any nonzero field there is no SP transition. RP is
necting a set of pointlike joints by means of rotatable barssomewhat more interesting, as we will find out. In this work,
Each joint has three translational degrees of freedgm, RP is studied in diluted random graphs of the ErRenyi-
=3, and each rotatable bar fixes the distance between twiype, With average connectivity, in the presence of a field
nodes, thus providing one relative constraint. The question di. Unlike SP, mean-field RP has, in the presence of a field, a
whether a given set of bars is enough to rigidize a giverline of first-order phase transitions. This line ends at a critical
structure constitutes a classical problem in applied mathpoint with classical critical indicea=0, ,8=1/2,7y=1, and
ematics, that of graph rigidity16—18. In statistical physics, §=3.
bonds(barg are randomly present with probabilifyor ab- Some of the analysis in zero field is relevant for the re-
sent with probability - p, and one asks for the typical rigid lated problem of bootstrap percolatigBP) [36—39, also
known ask core[40] in the field of graph theor{41-43. In
k BP[36], all sites with less thak neighbors are iteratively
*Email address: cristian@mda.cinvestav.mx culled. What remains, if something, is thecore [40]; a
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subgraph where all sites hak®r more neighbors. Ig-RP a  ing the continuity ofng in order to identify the physically
site needs at leasgtbonds in order to be attached to a rigid correct solutiorR in rigidity percolation is equivalent to re-
cluster. Thus the “infinite” rigid cluster is a subset of tge  quiring the continuity of the free enerdgiving rise to the
core. In Sec. Il B we will see that an even stronger conditiontMaxwell construction in the statistical mechanics treatment
exists for rigidity: g-RP requires the existence of g41)  of condensation transitions at the MF leyB0].
core[44]. It is shown in this work that the idea of identifyinge
Our approach starts by deriving an equation of state fowith a free energy for RP leads to consistent results in the
the “order parameter’R(y,h), the probability that a ran- presence of a field as well. In Sec. VI it is shown ttBtthe
domly chosen site belongs to the rigid cluster, as a functiolorder parameteR is obtained as a derivative of the free
of y, the average number of bonds impinging on a site, ané@nergy with respect to the fiel(?) the condition of stability
h=yH, whereH is the applied field. We will calH or h  (Sec. IllQ may be related to the positivity of a suitable
indistinctly the “field” variable. The equation of state, as is second derivative of the free energy, d8githe continuity of
customary in these cases, is found to accept multiple soluAg can be cast exactly in the form of Maxwell’s rule of equal
tions. Stability analysis is not enough to single out a uniqueareas on the RP equivalent ofPaV diagram(which is the
solution. Of central importance, in order to lift this multiplic- H-R diagram, see Fig.)7
ity, are y,(y,h), the average number of “redundant” bonds  This work is organized as follows. The system under con-
per site(see latey, andng, the average number of uncan- sideration is defined in Sec. Il A, and its equation of state is
celed degrees of freedom per site. Their relevance resides fterived in Sec. Il B, establishing its connections with boot-
the fact that theynustbe continuous functions of. Requir-  strap percolation. In Sec. Il C the field is introduced. Section
ing thatng (or, equivalently,y,) be continuous is enough to Il starts the analysis of solutions of the general equation of
identify the physically correct solution. state, discussing stability and the existence of a critical point.
This work is similar in spirit to previous treatments of RP The concept of redundant constraints is introduced in Sec.
in zero field on Bethe latticd®1], i.e., networks where each 1V A and their density is calculated in Sec. IV B. This result
site has exactly randomly chosen neighbors. Here we con-is used in Sec. V to determine the valyg where the first-
sider the effect of an external field and particularize to ran-order transition takes place. In Sec. V B, the counting of
dom graphs of the ErdeRenyi-type[45]. The introduction constraints is done on theg{ 1)-rigid core in zero field.
of a field appears to be much more tractable analytically orSection VI discusses several consequences of identifying the
Erdcs-Renyi graphs than on Bethe lattices, and this is thelensity of uncanceled degrees of freedom with a free energy,
main reason why most of the results presented here are f@nd Sec. VII contains a discussion of the results. Bethe lat-
Erdcs-Renyi graphs. For these, we are able to derive an andices are briefly considered in Appendix D.
lytic expression for the densities of uncanceled degrees of
freedom andy, of redundant bonds for arbitrary values of Il. SETUP
the field. Bethe lattices are discussed briefly in Appendix D.
In zero field, analytic calculations are also straightforward
for Bethe lattices, and allow us to obtain, in an entirely ana- We consider graphs made bf sites(or “nodes”) where
lytic fashion, some of the results obtained by numerical in-each of theN(N—1)/2 pairs of distinct sites is connected by
tegration in Ref[21]. Bethe lattices with a field are also a bond(or “edge”) independently with probabilityp. This
discussed, however the calculations become rapidly cumbedefineq 45] an Erds-Renyi graph with average coordination
some in this case. numbery=p(N—1). In this worky will be taken to be of
It is known that SP and Potts models are particular casethe order of 1. For larg&\, a site of this graph is connected
of a more general Fortuin-Kasteleyn random-cluster modelio k other sites with Poissonian probability,(y)
defined by a continuous parametgf46,47. SP can be ob- =e~7¥/k!.
tained as thel— 1 limit of this random-cluster model and, in  As appropriate for rigidity percolation, each node of this
this limit, the logarithm of the partition function coincides graph is regarded as a “body” witly degrees of freedom.
with the average number of connected clusters. It seems poBor example, rigid bodies il dimensions havel transla-
sible that a similar mapping might exists for RP as well tional degrees of freedom plud— 1)/2 rotational degrees
although it has not been found up to now. However it hasof freedom for a total ofy=d(d+1)/2. In this work,g is
been proposed48,21] that the number of uncanceled de- taken to be an arbitrary integer. Each present bond represents
grees of freedommg is a good “free-energy” candidate for one constraint that is, removes one degree of freedom. In
RP in zero field. Whelg=1, each connected cluster has oneorder to have a physical representation in mind, a bond can
uncanceled degree of freedom, so both definitions coincidee thought of as a rotatable bar that fixes the distance be-
in this limit. We explore on this idea further in this work.  tween two arbitrary points belonging to the bodies it con-
It is possible to establish a pedagogical parallel betweemects[51,15. For the class of graphs that we consider, at
the RP transition and a condensation transition. One identimost one bond is allowed for each pair of nodes.
fies the coordination parameterwith an inverse tempera- As the number of present bonds grows, parts of this graph
ture B; the negative of the order paramefiplays the role  will become “rigidly connected.” Rigid connectivity of a
of the fluid volumeV (it is also possible to identifiR with p, subgraph meanghis is our definition that the total number
the fluid density [49] and the fieldH =h/y is the fluid pres- of degrees of freedom in the system cannot be further re-
sureP. Within this analogy, it is natural to argue that requir- duced by additional bonds connected between nodes of this

A. Randomly diluted graphs
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subgraph. Such subgraphs are customarily called “rigid clus- On graphs of the ErdeRenyi-type, the probability to
ters.” Arigid cluster has no internal degrees of freedom left.have k outgoing neighbors is the same as that to hkve
When the coordinatiory is large enough, the largest rigid neighbors altogether, i.eP,(y) [Eg. (1)]. This is so because

cluster encloses a finite fraction of the system’s sites, an@inks are independently present. LettiRgbe the probability
rigidity is said to percolate. For low the system is in the that a site baj-OC, by the same reasoning as in the preced-
flexible, or floppy, phase, and there are no extensive rigigng section we conclude that a random site is connected to
clusters. exactlyk outgoingg-OC neighbors with probabilit, ( yR).

A rough estimate of the threshold for the appearance of a hus R satisfies th i . R
extensive rigid cluster can be obtained by equating the aver.nus R satisfies the same self-consistent equatinas

r . . .
age number of constraints per site, whichyi®, to g. This does in the RP problem with degrees of freedom, i.e.,
results in the so-called Maxwell estimafd3,52,48,2], N A

yMaxwell= 2. This estimate becomes exact in tie 1 limit R=Ggy(¥R). (4)

(Sec. VB. . N
Note that by requiring that each site in a tree gas more

g-OC neighbors we ensure that all sites, except perhaps for

the top one, haveg+ 1) or more neighbors. The probability
Let us now defin& to be the largest rigid cluster in the Pg(g+1) that the top site itself hag+ 1 or more neighbors

graph, if one exists. A site i@ will be said to be a “rigid  (which areg-OC) is then given by

site.” Let R be the probability that a randomly chosen node

B. The equation of state in zero field

be inC. In order fori to be inC it is necessary and sufficient Pep(g+1)=G . 1(yR)=R—P,(yR). (5)
that it be connected tg or more other nodegin C. Our g ’
definition of rigidity is thusrecursiveat this stage. This expression gives the density of thg+(1)-BP infinite

Asite ] is rigid and connected towith probability pR. - ¢jyster,[or (g+1) cord at the point where it first appears
Thereforei has exactlyk rigid neighbors with probability [36,41,43. So one must first solve E¢4) in order to obtain

N-1 Kiq_ N—i—k ini -

(_k )(pﬁ) (1 bptIJ:?' : Eor N Iargle a_nc_id defmrl]rt;gx R as a function ofy, and then use Eqb5) to find Pgp(g
= YR, the probabilityP, to have exactlyk rigid neighbors 1) Numerical result$53] show that Eq(5) is exact for
may be written as large N.

Pu(x) =€ *x/k!, (1) We see that theg+ 1)-core densityPgp(g+1) is some-

what smaller tharR wheneverR>0, while R in turn satis-
fies the same equation as the den8ityf rigid sites ing-RP.
Later in Sec. V B we will see that in zero field, whenever
there is ag-rigid cluster, it contains as a subset thgeH1)
core.

showing that the numbédy of rigid neighborsof a randomly
chosen site is a Poissonian variable with averageyR

=3 _okPy(x). Since a site must haxgor more rigid neigh-
bors in order to be rigid itself, we conclude tHatsatisfies

the self-consistent equation
C. Equation of state in the presence of a ghost field

” Building on ideas first discussed by Essf®d], we now
R:ng PlyR)=Gy(¥R), (20 introduce a “ghost field™H that couples to the order param-
eter R in the following way. In addition to the “normal”
bonds of our graph, we will have ghost bonds. Each ghost
bond connects one randomly chosen site to a “rigid back-
ground” [54], and provide®neconstraint, i.e., removes one
- degree of freedom. The total number of ghost bonds in the
Gm(x):gm P(X). () system is by definitiorNyH=Nh. Multiple occupation is
allowed, so that the probability for a site to hameghost
bonds is Poissoniaf®,(h)=e "h"/n!. (See Appendix A for
a discussion of the differences between Poissonian and linear
Let us now briefly discuss the related problem of boot-field definitions)
strap percolatio36] or k core[40]. We want to assess the If n=<g ghost bonds are connected to a site, then this site
probability Pgp(g+ 1) that a randomly chosen sitdbe part hasg—n degrees of freedom left. Otherwisernt=g, this
of the (g+1) core. Assume this is the case. By following site has no degrees of freedom left, i.e., it is rigidly attached
one of its links, a neighbgris reachedj must have at least to the background. It is easy to see thatettensiverigid
g other neighbors. We call these neighbor$, a@tther than the  clusters are rigidly connected to the background with prob-
sitei from which we arrived at it, the “outgoing” neighbors ability one, ifh>0. From now on, a site is said to be rigid if
of j. Each of these in turn must hageor more outgoing it is rigidly connected to the background, either directly
neighbors, and so on. More formally, let us define the propthrough ghost bonds, or indirectly through rigid neighbors.

where we have defined

Bootstrap percolation, or k core

erty of g-outgoing connectednesg-0OC) in the following If a site hasn=g ghost edges connecting it to the back-
(recursive way: A site isg-OC if g or more of its outgoing ground, then it is rigid. Otherwise if<g, it is rigid if it has,
neighbors also are. in addition to thesen ghost bonds, d—n) or more rigid
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neighbors. Thus using Eql) we may write, in the presence 1.0 ‘ ‘ ‘ ‘ ‘
of a fieldh=H1,
g=1
. o1 . 08 |
R=2 Py(h)+ 2 Po(h) X P(yR).  (6) — 06
n=g n=0 k=g—n 4;
T 04
After a simple resummation, this expression reads
0.2 |
R=Gg4(yR+h), (7) 0.0 | | | |
00 05 10 15 20 25 30
with G4 given by Eq.(3). Equation(7) generalizes Eq2) in y
the presence of a field, and is the equation of state for our 1.0
problem.
The simplicity of Eq.(7) is one of the reasons leading us 08| g=2
to study this particulafPoissoniai definition of the field.
Other field definitions(see Appendix A for example, as- —~ 06|
suming that each site is rigidly attached to the background g
with probability h, or other random graph structures such as * 04|
Bethe latticeq21] (see Appendix Dare also tractable with
the methods used here, but the algebra becomes more com- 0.2
plicated.
Clearlyy=y(H+R) plays the role of a “Weiss field” in 0.0
the MF equation for a ferromagnet. By analogy we may thus 00 10 20 30 40 50 60
identify y as the inverse temperature ardas the magnetic Y

field. It is illustrative to take notice of the similarities be-
tween Eq.(7) and other MF equations. For the Potts model
[55],

FIG. 1. The densityR of rigid sites as given by Eq7) for g
=1 (scalar percolation, tgpand g=2 (rigidity percolation, bot-
tom). The field takes the values=0.0,0.1,0.20...,1.0. Forh
=0, R=0 is a solution for ally in both cases. Fay=2 the critical
m=®q(,8m+ h), (8) field is h,=0.287.

. . . - Ill. ANALYSIS OF SOLUTIONS
where B is the inverse temperature is the magnetization,

h=pH is the external field, an® ,(y)=(e’—1)/[e’+(q In this section, the solutions of our equation of stéte
-1)]. are discussed. In order to obtaR(y,h) numerically for
Note that wheng=1 (scalar percolation Eg. (7) gives  giveny andh, one might, for example, iterate E.) until a
G.(y)=1—e Y, the same as Eq8) for q=1. This is of desired numerical accuracy is reached. This procedure was
course just a consequence of the known equivalence betweesed in Refd20,21. However in this work the following
scalar percolation and thg—1 limit of the Potts model alternative procedure was preferred: givier 0O fixed, and

[46,47. for a sequence of values gf>h, we evaluate
However, the archetypal example of a first-order transi-
tion with a two-parameter phase space is the condensation R=G4(y)=Ggy(x+h),
transition[50], described at the mean-field level by the van
der Waals equation. The reduced form of the van der Waals y=(y—h)IGy(y) =x/Gy(x+h), (10)

equation can be written as - o ) )
thus definingR(y,h) implicitly. In this way one obtains the

results displayed in Fig. 1. This procedure allows us to obtain

A=T(BO+P)), © all solutions of Eq.(7), while the iterative procedure men-
tioned above only provides the stable branches.
whereI'(y)=27y?/(y+8)?, P is the pressureg is the in- In zero field,R=0 is a solution¥ y andV g. If y is

verse temperature, and=3p? with p the number density’ large enough, nontrivial solutionR>0 exist as well. Ifh

has the same general featuresSaand®, namely, it starts at >0, one has on the other hand that there is at least one

zero, grows sharply, and saturates for large values of its arontrivial solutionR>0 V 7.

gument. Therefore all three systems give rise to the same In the SP caseg=1), G;(x)=1—exp(—x). If his non-

phenomenology, including, of course, sharing the sésf@s-  negative, Eq(10) always has two solutionR(y,h) for all

sica) critical indices at their critical points. v>0. If h=0 there is, in addition to the trivial solutioR
Within an analogy with a condensation transition, in the=0, a nontrivial solution that is negative when<y.=1

RP problemy plays the role of an inverse temperature, whileand becomes positive foy>vy.=1. Above y, one hasR

H=h/v plays the role of a pressure. ~(y—1). In this case there is eontinuoustransition aty
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1.0 | | | | | B. Critical point
0.8 1. Scalar percolation(g=1)
| Forg=1 the critical field ish* =0. An additional condi-

= 06} ] tion for criticality is thatx/y be tangential ta5(x), and has
E:>’ Y+ ‘ a unique solutiony* =1 andR* =0. In the scalar case there

0.4 | : 1 is a continuous transition ai,=1 [45].

0.2 | Y | 2. Rigidity percolation(g>1)

0.0 e : Wheng>1, the condition thak/y be tangent taGy(y)

c 1 2 3 4 5 6 [Eqg. (1] identifies the spinodal points, and is not enough to

single out the critical point. However, whdntakes its criti-
cal valueh*, the spinodals<S. coalesce onto an inflexion
FIG. 2. For allg>1, the order paramet&as given by Eq(10)  point. Thecritical point {h*,y* ,R*} is thus defined by
becomes multivalued for small values of the figldThe branch

joining the spinodalsy.. (dashedl hasdR/dy<0 and is thus un- 922G
stable. The uppermost and lowermost brandkefd) are stable. In 9 =0, (129
this example,g=2 andh=0.15. For zero field the spinodal_ ax? -
goes to infinity and the branch<Oy<1y_ collapses onto th&R '
=0 solution, which is stable for alj. . «

Gy Gy(x*+h*) 1 (12b)
=1, a well known result for scalar percolation on random 24 x* h* x* ¥* .

graphd45]. If h>0, there are also two branches ®(y,h),
however only one of them is positive. The other branch isFor h>h* there is no phase transition. Using Ed), and
negative and therefore unphysical. Thus there is no transitiodefiningy =x+h, these two equations can be solved exactly.

(Fig. 1) for h>0. The critical point turns out to be
A richer behavior is found for the RP casg>1), as
shown in Fig. 1 forg=2. In this casey, as given by Eq. y*=g-1,
(10), may no longer be a monotonous functionypaind, for
this reasonR becomes a multivalued function ¢f In con- y* ={Pg_1(g— 1)} t=e9"L(g—1)!/(g—1)97 1,

trast to SP, wher® is multivalued but only one solution is

positive, here both are. This allows for the existence of a o

flrst-ord_er transition. The physical con5|dg.rat|ons. whlc_h lead R* =Gy(g— 1):el—g2 (g—1)/k!,
to the identification of the correct transition point will be k=g

discussed in Secs. Il C and V.

h*=y* —x*=g—1— y*R*. (13

A. Spinodal points

The condition thaty as given by Eq(10) be stationary in Forg=2 [56] one finds

Xx=vyR reads v =e,

dG4(x+h)
Gy(x+h)—x————=0, (12) R*=(e—2)/e,

* —2Q__
and has two solutions?. (g,h) for all h smaller than a criti- h*=3-e. (14

cal valueh*(g). These two solutions in turn defing’. ,
which are turning points foR(y,h) (see Fig. 2 In the in-
terval y5 <y<+y®, R(y,h) has three solutions, two of
which are stable as we show next. Therefodistontinuous
y-driven transition takes place whdn<h*(g). Right ath
=h* the transition becomes continuolsee Sec. Il B,
while for h>h*(g), R is a smooth function ofy and no
transition occurs. The RP transition on random graphs is similar to other

The thresholds/®. can be identified aspinodal pointsas ~ MF transitions with first-order lines, as discussed in Sec.
first discussed in Ref21]. The true rigidity percolation tran- 1l C. Thus it can be concluded that RP must have classical
sition happens at a valug.(g,h) that lies in between the critical indicesB=1/2, =3, andy=1. For completeness
spinodals, and which we analytically determine later inwe show that this is indeed the case by deriving the critical
Sec. V. indices briefly in Appendix C.

For largeg, and approximatingn! ~(n/e)"(27n)'?, one
sees thaty* «g'? while h* ~g and thusH* ~g'2 This
means that in the limig>1 most constraints are field con-
straints at the critical point.

3. Critical indices
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C. Stability analysis

Stability can be analyzed if Eq7) is interpreted as a
recursion relation,

Rt+l:G(’yR[+h)! tzolll o9, (15)
for fixed y and h. AssumeR(vy,h) is a fixed point of Eq.

(15), i.e., R=G(yR,h). This fixed point is stable if

9G(yR+h) IG(x+h)
— =y <1. (16
JR X N
v.h x=7vR

SinceG’(y)=P4-_1(y) we conclude that the stability condi-
tion reads

YPg-1(y) <1, (17
with y=x+h as defined previously.

A more useful form results if one notes thatR#0, Eq.
(16) is equivalent to requiring thatR/dy>0. In fact,

dR

dR dGdx _, d o
Tdy

4y dxay CayRTC

dr 1-yG")=G'R 18
= gy (1776)= (18)
and sinceG' >0 VY x>0, we conclude that a nontrivial fixed

point R(y,h)>0 of Eq. (15) is stable if and only ifdR/dy
>0.

This condition has a simple physical meaning: increasing
the average connectivity should not decrease the rigid den-

sity R. A similar stability condition holds for fluids, namely,
that the coefficient of thermal expansion be positive.

1. Scalar percolation(g=1)

In zero field,R=0 is a solution of Eq(7), thus a fixed
point of Eq.(15), V g. If g=1, stability[Eq. (17)] requires
that yPo=vye "R<1. Thus the trivial solutionR=0 be-
comes unstable fory>1, where the nontrivial solution
(stable becausdR/dy>0, see Fig. 1 first appears. This

PHYSICAL REVIEW E68, 056104 (2003

FIG. 3. In this two-dimensional example, each nadecle)
represents a point that has two positional degrees of freedom, while
each bond fixes the distance between two points and thus provides
one constraint. The graph on the left still has three remaining de-
grees of freedom: two translations and one rotation. Byrdight)
is a redundant bond, because it connects two nodes which were
already rigidly connected. After adding bong, the bonds that
provided the rigid connection betweenandj becomeovercon-
strained (thick lines. Any one of these can be removed without
altering the number of remaining degrees of freedom, which still
equals three. The graph on the right has one redundancy, but 12
overconstrained bonds.

the system switches from one stable solution to the other is
uniquely defined by a continuity requirement, as we elabo-
rate later in Sec. V.

Theh=0 case is similar, however in this case the lowest
stable branch collapses onto the trivial solut®# 0, while
the spinodaly_ goes tox.

IV. ZERO MODES, AND REDUNDANT AND
OVERCONSTRAINED BONDS

In this section the counting of uncanceled degrees of free-
dom and the useful notions of redundant and overconstrained
bonds are discussed. These will be of central importance in
our subsequent treatment of the RP problem.

A. Definitions

We consider a graph made HNfsites, each witly degrees
of freedom, and for the moment assume that0, i.e., there
are no ghost-field constraints. Each present bond removes
one degree of freedom from the system, unless itrsdan-
dant bond. A redundant bon¢br constraink is the one that

situation is typical of continuous transitions; the ordered sojinks two nodes which werelready rigidly connected, for
lution appears exactly at the point where the paramagnetigyample, nodesandj in Fig. 3. The addition of a redundant

solution becomes unstable.
Whenh>0 there is only one solution for E¢7), and it is
stable for ally sincedR/dy>0 [Eq. (18)].

2. Rigidity percolation(g>1)

constraint does not reduce the number of degrees of freedom
in the system. Thus the balance of degrees of freedom reads

Ne=Ng—E+B,, (19)

For g>1 the situation is more interesting, as severalwhereNg is the number of uncanceled degrees of freedom

stable solutions of Eq7) can coexist. Ih<h*, Eq.(7) has
three solutiongsee Fig. 2 in the rangey® >y>1y% . The

[57], E is the number of bonds in the graph, aBd is the
number of redundant bonds.

branch joining the two spinodal points can be discarded since For an Erds-Renyi graph one ha&) = yN/2. Defining

it is unstable(becausadR/dy<0). However the other two

(B;)=7,N/2, the average density-(y) of zero modes per

branches(solid lines in Fig. 2 are stable so that there is Sité is written as

coexistence of two stable solutions fof >y> 9% . Thus
the system undergoesjadriven first-order transition some-
where between the spinodals. The precise pginat which

Ne(y)= (20)

N 1
<NF>=g—5[y— »(9)1.
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Let us assume thédtis a redundant bond. This means thatfunction for the RP problem, and the consequences of such
its two end nodes are rigidly connected eveh i§ removed. identification will be discussed. Although this identification
Let B, be the subset of bonds that, in the absenceb,of is not necessary for solving the RP problem, it provides in-
provide rigidity to its two end nodes. After additg any of  teresting additional insight into this problem, insofar it helps
the bonds in{ B+ b} (thick lines in Fig. 3 can be removed making a link with thermodynamics.
without altering the total number of degrees of freeddm
The subset of bond&B,+ b} is said to be overconstrained. B. Calculation of v,

From a physical point of view, the overconstrained bonds :
may be defined as those that carry an internal stress becangWe now show how the density,(y,h) of redundant

of the addition of a redundant borithat has a length mis- 20ndS i calculated. Obviously when=0 there are no re-
dundant bonds, i.ey,(y=0h)=0, so we can write

match.
Please notice the important difference between the num- Y3,
ber of redundancies and the number of overconstrained 7r(7,h)=f W dv, (23
0 h

bonds: when adding a redundant bdsdch asgj in Fig. 3

the number of redundanci€s always increases by exactly where the integral is done along a path of constantn

one. However, the number of overconstrained bonds mag& endix B we show58] that

increase by more than one. In the example shown in Fig. 3, P

the number of overconstrained bonds increases by 12. (B,)
We then conclude that, when addiagy bond to a graph, 02

the number of redundanci®s will either increase by onéf

the chosen sites were rigidly connedted stay unchanged where(B,,), is the total number of overconstrained bonds in

(n.c not), in which case the number of zero mo'dﬁls W'." B. Consider two randomly chosen siteandj. As discussed
either stay unchanged or decrease by one. This implies th?r% Sec. IV, a bond;; is overconstrained if andj are rigidly
the densmes;/', of redunda.nt bonds and. Of. zero modes connected to the background, even in the absence of this
must be continuous functions of t_he densigyof present bond. On a random graph, this happens with probakitty
bonds. The density of overconstrained bonds, on the Othe|thus a bond is present and overconstrained with probability

hand, need not be continuous. ,{MN)RZ and therefore the average number of overcon-
Let us now discuss how the balance of degrees of freedo Drained bonds i€B,,)= yR2N/2. We can now write Eq.

is modified by ghost-field bondsSec. Il Q. If a site hasn (24) as
<g present ghost edges connecting it to the rigid back-

9y h:<80u>v (24)

ground, then it contributes withg(—n) degrees of freedom ay,
to Eqg.(19). If on the other hand it is connected to the back- v = R?, (25
ground byn=g ghost bonds, then this site has no degrees of Lan
freedom left to contribute to Eq19). The effective number
0esf(h) of remaining degrees of freedom contributed by anSO that now Eq(23) reads
average site is thus Y,
%(%h)=JO R(y,h)dy. (26)
[¢]
geff(h):zfo (g=MPu(h)=9g[1-Gg.1(h)] Note that, while Eqs(23) and (24) are exact for arbitrary
graphs, Eq(25) only holds under the assumption that two
—h[1-G4(h)], (21)  neighboring sites andj are independently rigid with prob-

_ . _ . _ ability R. Thus in deriving Eq(26), correlations have been
where Gy is defined by Eq(3). Taking this result into ac- ignored. This is correct on random graphs of the type con-

count, in the presence of a field we now have that sidered here, but fails on finite-dimensional lattices.
L It is not immediately obvious how Eq(26) can be
Ne(y,h)=ger(h) —z[y—»(v.h)]. (22 integrated, since we do not have an explicit expression for

R as a function ofy. However usingk=yR=y—h one can

Note thatng andy, are trivially related through the addition \yrite R2dy=Rdx—xdR=[R—(y—h)JR/dy]dy, whereR
of a known function ofy andh. Therefore, the knowledge of =Gy(y) as given by Eq(7). After integrating by parts,
eitherng or vy, provides exactly the same physical informa- Joxih
tion about the system. -

The importance of Eq(22) is twofold. In the first place, 7f={2f Gy(y)dy—(y—h)Gy(y)} L (27)
as discussed above; andy, must be continuous functions .
of v. A similar reasoning allows one to conclude that theyUsing Eq.(3), Eq. (27) can be integrated to give
must also be continuous functionshofThe continuity ofy,

_ =x+h
andng is a key property, and will be used later in Sec. V to Ye={(y+h=29)Gy(y)+29P(V)}}=h"
select the physically correct solution of Ef) whenever —(v+h)G —2hG.(h
indeterminacies arise. Second, in Sec. VI it will be argued (y+h)G(y) o(h)
that ng can be identified with the logarithm of the partition +29[Ggy1(h)—Ggi1(Y)]. (29
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FIG. 5. Coexistence lingéines of first-order phase transitions—
dashedl in the space defined by the two intensive parameters of
rigidity percolation, the fieldH=h/y and the “temperature” ¥,
for several values of the numbgrof degrees of freedom per site.
The critical point, defined by Eq13), is indicated with an asterisk.
For all g=2, i.e., for rigidity percolation, this critical point has

classical indicesx=0, f=1/2, y=1, and5=3. The casgg=1

This expression er_lables us to C_alculate the density of reduﬁia(l)a}r ar:ﬁjrct? el?;fgé ?oOtdisf?;\er::isniSZr(s:thilti/alclzzgtvattyr;:l _a;'d
dant bonds analytically. In previous work on Bethe lattices ~

[21], Eq. (26) was solved in zero field by numerical integra- £~ 1+ Y= 1 ando=2.

tion, using for this purpose the values Rfthat result from _

iteration of Eq.(2). Although the algebra becomes slightly {(y+h—=29)Gy(y)+2gPy(y)} §;§§:o, (30)
more complicated, the approach used here to calcylate

applicable to Bethe lattices as well. Later in Sec. VB wewherey, g=yo(h)Ra g+ h.

FIG. 4. The density of redundant bongs (thick dasheg de-
scribes a Maxwell loogdot-dasheglwhose crossing point defines
the location of the true transition. After discarding the unphysical
loop, the densityR of rigid sites(thick solid) jumps at the transition
betweenA andB, but y, is continuous. Shown is an example with
g=10 andh=5.

present some results for Bethe lattices. Equation (30) cannot be solved analytically in general,
however it is easily solved numericalljpy iteration for
1. The density of zero modes each value oh andg, to obtainy.(g,h). In this fashion the
Using Eqs.(7), (21), (22), and (28) we can write location of the coexistence line can be calculated to arbitrary

precision (Fig. 5). At the transition pointy.(h) the order
parameteR jumps|[Fig. 6(@], but the density of redundant

n,:(y,h)= %(Rz—l)‘f‘(h—g)(R— 1)+gpg(y)' (29) bOI"IdS‘)/r is Continuous[Fig. 6(b)]

B. The case of zero field: Maxwell counting on the
where y=x+h=yR+h=y(R+H). Because of Eq(22), (g+1)-rigid core

continuity of  implies that ofne. For zero field one has th&=0 for y<+.. Equation(26)

then implies thaty,=0 for y<vy.. At the transition point

ve, a rigid cluster suddenly appears that contains a fraction
In the limit y—N, all bonds are present and there are noR. of the graph. In zero field, E430) reads

remaining degrees of freedom, i.ez—0. It is easy to

verify that Eq.(29) indeed satisfies this condition.

2. A consistency check

(Xxc—29)R.+29 Pg(xc):Q (39)

where all quantities are evaluated in the rigid pha@afdy

V. LOCATION OF THE TRANSITION POINT are zero in the floppy phase

Even this simpler equation does not admit analytic treat-
ment. However, very precise solutions can be obtained nu-

The valuey.(h) where the transition takes place is univo- merically as described already. Table | contains some ex-
cally determined by the requirement thgtbe a continuous amples.
function of . In order to see how this works, imagine that  Please note thay, is smallerthan the value § needed
for a givenh<h* one letsh<y< and calculate,(y,h) for global balance of constraints and degrees of freedom.
[Eq. (28)] and y(y,h) [Eq. (10)], thus obtaining a plot of, However, all degrees of freedom belonging to sitesthe
vs v (Fig. 4). In doing so one finds thag, describes a loop rigid cluster (which appears suddenly at the transition ppint
(sometimes called a “Maxwell loop” in statistical mechan- are by definition canceled out by constraints. Moreover,

A. The general case

ics). since for zero field the number of redundant constraints per
The existence of a crossing point implies that two valuessite is exactly zero at the transitiqgee Fig. 6, one con-
ya andyg exist such that cludes that the average number of bonds per site, for sites on
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> kP(x)
k=g+1

=2g. (33

> Pux)
k=g+1

This sum counts the number of rigid neighbors for sites on
the (g+1)-rigid core, that is, the subgraph of the rigid clus-
ter that has minimum coordinatiorg{ 1). Equation(33)
means that theg+ 1)-rigid core has an exact balance of
degrees of freedom.

Clearly, the rigid cluster may also contain sites not in the
(g+1)-rigid core. When these are considered, it is possible
to see that the balance of constraints and degrees of freedom
is still respected.

The case of large g

An analytic solution of Eq(31) is possiblethough some-
what trivial) in the g>1 limit. In this casePy—0 andR
—1, i.e., thereis a jump froR=0 toR=1 at the transition
point. Plugging these observations into [E8fl) one gets, for
zero field,

This means that the rigid transition happens exactly at the

lines). The transition pointy,(h), whereR undergoes a discontinu- point where global balance between constraints and degrees
ous jump, is determined by the physical requirement that the denef freedom is attained. In other words, at Maxwell count-

sity of redundant bonds, (b) be continuous. In this examplg
=2 and(from right to lef) h=0.0,0.1,0.20...,1.0. Forg=2 the
critical field ish,=0.287.

the rigid cluster, must be exacthygzat y.. The conclusion is

ing is exact on the rigid cluster for aj while forg>1 itis
globally exact as well.

VI. RELATION BETWEEN ng AND A FREE ENERGY

then that sites on the rigid cluster have more bonds than |n this section, the consequences of making the identifi-

average.

cationng—(In Z)/N are explored. It has been shown some

This observation may be formalized in the following way. time ago that SP can be mapped onto ghe 1 limit of the

Using yR=x, R=3{_ P, (x) with P,(x)=e *x"/k!, and
XPy(x)=(k+1)Py, 1(x), condition(31) can be written as

[}

> (2g—K)Py(x)=0,
+1

(32

which in turn implies

TABLE I. The rigidity percolation threshold coordinatioyp, ,
and the jump in the rigid cluster densi®¢ on Erds-Renyi random
graphs with zero field, obtained from solving E81) for several
values ofg, the number of degrees of freedom per site.

g v:(9) Discontinuity R,

2 3.58804747296%8. . . 0.7491537851025. . .
3 5.754925611546. . . 0.88123983705D. . .

4 7.84295819428. . . 0.933538491167%6. . .
5 9.8955136185949. . . 0.95963854991648. . .
6 11.9288724790262%6 . . 0.974275720961309. . .
—oo 29 1.0

Potts model[46,47]. This mapping allows one to draw a
parallel between an equilibrium thermodynamic transition
(Pott9 and percolation, which may be described as a purely
geometric transition. One of the outcomes of this equiva-
lence is the identification of the total number of clusters in
percolation as the logarithm of the partition function for the
resulting Potts model. The existence of this mapping has had
profound impact on our understanding of scalar percolation,
e.g., by allowing the exact calculation of percolation critical
indices in two dimension$2]. No equivalent mapping has
been found for RP yet. However it has been suggested
[48,2]] that a possible generalization for the free energy in
RP for zero field is the total number of remaining degrees of
freedom(zero modes ofloppy modes In theg=1 case of
RP each cluster has one remaining degree of freedom, thus
the SP result is recovered.

In Sec. IV it was shown thatg (equivalentlyy,) has to
be continuous. This was used in Sec. V to locate the pgint
where the first-order transition happens. Thuplays a role
similar to that of the Gibbs free energy, which is also a con-
tinuous function of its intensive parameters. In this section
we add further evidence supporting the identificatiompf
as the logarithm of the “partition function,” or free energy,
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for the RP problem on random graphs. We demonstrate thaerves to illustrate the fact that the areas above and below the
the ansatzZzpxeN" is consistent also in the presence of ahorizontal coexistence line are equal, as B9) requires.

field, and show how several thermodynamic quantities result

from derivatives of this free energy. B. Energy, entropy, and work

In Appendix it is shown that the derivatives o are In the following we will assume thair. [Eq. (29)] is the

Ng 1 logarithm of the partition function, i.eng=—yf, with f a
. =§(R2— 1), (358  free-energy density ang=1/T the inverse temperature. The
lan energy densitye is then
ang ang 1
—| =R—-1. 35b) =——| ==(1-R? -
an | (35b) e v, 5(1-R*)+H(1-R). (40)

As expected, the order parameRresults form deriving the  The entropy per sits turns out to be
logarithm of the partition function with respect to the field-

like parameter, up to a constant shift. _ ot _ e
From Eqgs.(35) we furthermore obtain STTOT H_nF+ 7e=0[Py(y)=(R=1)]. (4D)
ng| 1 From the first law of thermodynamics, and using E@)
Iy H_E(R —DHHR-D), (363 nd (41), we conclude that, in an infinitesimal transforma-
tion, the “work” done by the system against the environment
INg is:
—| =y(R-1). (36b)
"y dw=dq-de= —ds-de=> " gH=(R—1)dH
w=dq e—; S e—;a—H =( )dH.
A. Maxwell's rule of equal areas (42

The continuity requiremen80) employed in this work to  The analog of the constant-pressure heat capacity for a fluid
locate the true transition point is analogous to the condi- s in our case the constant-field heat capacity
tion that the free energy be continuous, as noted in previous

work [21]. The continuity of an appropriate thermodynamic s yZPg,l(y)
potential is discussed in elementary statistical mechanics CH:_YE :m’
textbooks in connection, for example, with van der Waals’ H ot
equation50,59, where it is used as a criterion to locate the\yhich is non-negative by Eq(17), and diverges as
transition. The continuity condition for our RP problem is |y—v*|~* at the critical point. This of course should not be
written in general as taken to mean that=1, since it is the constant-density heat
B capacity what defines (For a discussion, see Rg60].)
f dng=0, (37)  The constant-field heat capacity, is expected to diverge
A with the same exponeny as the susceptibility, unless the
system has certain symmetries, which is the case for the
Ising model, but not for RP.
The analogous of the “constant-density” heat capacity is

oe

7y (43

=77
H

where A and B are the two phases that coexist at the first-
order transitior(see Fig. 4. Clearly Eq.(30) is the particular
case of Eq.(37) for which the integration is done along a

path of constant field. Choosing a path-B on whichy is 9s
constant instead, it is easy to put E§7) in the form of the CrR=—7y—| , (44)
famous Maxwell’s “rule of equal areas.” Starting from 97Ir
BIng which is zero and thua=0.
0= f m dh, (38)
A Y C. Clausius-Clapeyron equation
where the integral is done along an “isotherr(d line of Let Af=—1/yAng=—1/y(ng(B) —ng(A)) be the free-
constanty). After using Eq.(35b and integrating by parts, energy difference between the two phases in the coexistence
this reads region. This is a function of the temperature- 1/v and the
. field H=h/vy. Following standard textg61], we write
(Re—Rw= | h(R.ydR (39 AT
) oH aT Iy, As
whereh(R,7) =G, *(R)— yR. T =T AT - AR’ (45)
Equation(39) is equivalent to the conditio®(Vg—Va) Af —
=f,?P(V,T)dV for a fluid, i.e., Maxwell's rule. Figure 7 JH T
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where the derivative on the left-hand side is evaluated on angtays unchanged, but the RP transition is delayed to lgrger
line of constantAf. Using Eg. (41) one can writeAs  values[20]. We have explicitly shown that, at the critical
=g(APg—AR). On the coexistence lineAf=0 so concentrationy. where the rigid cluster first appears, it has
As|coex=vA€[coex and, using Eq.(40) we have that an exact balance of degrees of freedom, i.e., it has exgctly
AS|¢oex= —hAR— y/2A(R?) = — AR[(ya+Ys)/2]. Thus the  ponds per site. This condition is satisfied both on the whole
Clausius-Clapeyron equation for the RP problem can be writrigid cluster and on itsq+ 1)-rigid core. However globally
ten as the system has lesser bonds than needed to attain this bal-
ance, meaning that the rigid cluster is selectively made out of

JH VatVYs . .

- = ) (46) sites with more bonds than average.

IT | coex 2 In previous work on Bethe lattices in zero fi¢RIL] it was
suggested that the numbey¢ of uncanceled degrees of free-

Since on approach to the critical poipt—~y*=g—1 [Eq. . S .
(13)], we conclude that the coexistence line reaches the critic-jom Is a free energy for the RP problem. For §P-() this

: . . ; result holds exactly, being one of the outcomes of the
cal point with slope §—1) in theH-T plane (see Fig. 3. Fortuin-Kasteleyn random-cluster modléb,47), which con-
Equivalently by a simple change of variables one can write y Y

Eq. (46) as tains SP and the Potts model as particular cases. For RP,
however, this identification only has the status of a plausible
ah Ra+Rg ansatz. This ansatz was used recently to predict some ther-
Y T T o (47) modynamic properties of chalcogenide glas$éd], for
coex which the RP transition has been shown to be relevant
implying that the coexistence curve approaches the criticd65,66,11,14
point with slope—R* in the h-y plane. Some of the reasons to believe that this identification
might be correct in general afe) the fact thatng must be
VII. DISCUSSION continuous at the discontinuous RP transition émdhe fact

o . . that for g=1, ng is the number of connected clusters per

The rigidity percolation problem witly degrees of free-  gjie 5o the Fortuin-Kasteleyn result for SP is recovered ex-

dom per site has been considered on Br@nyi graphs ,cqy |n this work we have shown that, in the presence of a
with average coordinatiory. An external fieldh is intro- roperly defined fielch, the order parameteR can be ob-
duced by connecting each site to a rigid background, OFained as a derivative of the free energy with resped,to

“ghost site,” with a certain probability that depends bras : . o e
described in Sec. Il C. The resulting equation of st&@jefor :::)L:]si:clilrr:ggturther support to the belief that this identifica

the densityR of sites that are rigidly connected to the back- .
ground undergoes a first-order phase transition on a “coexéitggdcea:nth;e ajgﬁ\%%“o?hzhifm?éx?r%si?;%%ggr
istence line”y.(h). This line ends at a critical poiriFig. 5) found to depend on the order parameRealone. This prop-

with classical exponente=0, B=1/2, y=1, and6=3. gy is shared by other MF systems, for example, the Ising
For comparison, the critical point of scalar percolatitime ferromagnet.

case ofg=1) is located ah=0 and has different critical On the pedagogical side, we have attempted to situate the
exponentsw=—1, B=1, y=1, andé=2 [1]. Therefore in  discussion in terms of the parallel between the RP transition
the MF approximation, scalar and rigidity percolation are inin a field and a condensation transition. Since only topologi-
different universality classes. In two dimensions, a similarcal (connectivity properties are important for RP, it can be
conclusion is reached by numerical medd8,15 where said that, in a sense, RP in a field is a sort of “geometric
both transitions are continuous in zero field. condensation transition.” Figure 7 illustrates the similarities

It has been recently argu¢@2] that for certain spin sys- between both transitions. However a closer match is pos-
tems, the existence of a discontinuous transition in the MFsible. Comparing Eq(7) to Eq. (9) one notes that, in a MF
approximation is enough to ensure that, in finite space dicondensation transition«p?=1/v? plays the role of the
mensionsd, there is a discontinuous transitiondfis large  order parameteR in RP. From this point of view, the analog
enough. If this result holds for RP, one would expect to see af volume in RP would be BY2 The analog of &-V plot
discontinuous transition in zero field for (and perhapg) s shown in Fig. 8. Note however that, within this definition
large enough. Up to now, extensive numerical simulationsf volume, P(V) doesnot satisfy Maxwell’s rule of equal
for RP have been performed only in two dimensionsareas [8Vv(P)dP=0.

[15,48,52,63 Except for pathological cases where the tran-

sition happens at zero dilutigi 5], it seems that the transi-

tion is continuous for ally in two dimensions. Large scale ACKNOWLEDGMENTS
simulations are still needed to clarify this issue.

On Cayley trees with a boundary;RP is closely related The author has benefited from many useful discussions
to (g+1)-BP[36,20. Both percolate at the same dengity with Professor Phillip Duxbury in the early stages of this
of present bonds, although with different spanning clustework. Financial support from the SNI program of
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0.20 ‘ unchanged, but the linear definition has to be modified
slightly. A single ghost bond is not enough to rigidize a site,
0.15 but one may generalize the definition by saying that a site is
0 either connected or not to the backgroundgoghost bonds,
z respectively, with probabilitie and 1—h. Within the linear
4L 0.10 | definition, ghost constraints are binary variables, that is, they
may be in one of two states. In the Poissonian definition on
0.05 | the other hand, each site can be in ongéfl stateqthere
is no difference whatsoever between havingnd more than
0.00 AVos g ghost constraints, so all these can be regarded as a single
00 02 statg. In this work we have chosen to use the Poissonian

definition, mainly because it considerably simplifies calcula-
tions.

FIG. 7. This plot of the fieldH vs the order parametdR for
rigidity percolation §=2 in this examplg is the equivalent of a
P-V diagram for fluids. Shown are the isotherfsslid lines along
which the coordination numbey is constant. The thick dashed line

delimits the “coexistence” region, and was obtained by solving Eq. | ot F(B) be an arbitrary function of the set of present

(39) numerically. The areas delimited by the thin dashed lines abov%dgesé’ of a graphg, and letP(B) be the probability to have
and below thesolid) horizontal coexistence line are equal. edge seB. The average of is defined as

APPENDIX B: DERIVATIVES OF THE NUMBER OF
REDUNDANT BONDS

APPENDIX A: ALTERNATIVE DEFINITIONS OF FIELD

Two different ways to introduce a field have been used in <]:>:% P(B)A(B), (B1)
the percolation literature. We will call them the “linear”
[29,32,33,3% and the “Poissonian’30,31,34 fields. The
linear definition states that each site may be either connect
or not to infinity (or the backgroundby a ghost bond, with

probabilitiesh or 1—h, respectively. In the Poissonian defi-
nition, each site can be connected to the background by — Bl 1 — o\ Bmad~ 1B

=0,1,2 ... ,» ghost bonds, and the probability to hame Pp(B)=p™(1=p) ' (B2)
ghost bonds iP,(h)=e "h"/n!. In SP each site has one ) ] ) o
degree of freedom, so all that matters is whether the site i&/hereBmayis the edge set of maximum possible cardinality.
free from ghost bonds or not. In this case, both definitions We now writep=p;p, with 0=<p;,p,=<1. This can be
are formally equivalent and related through a change of varitealized by assuming that two types of bonds are indepen-
ablesh=1—e™". However, note that it is the Poissonian dentl_y present with probabilities, af‘d P, respectively, and
definition which allows the most natural connection with that mborder for an edhge todbe' active, ?Oth prestf bpnds
thermodynamics, in the sense that it plays the exact role of ust be present on that edg.is now a function of active

magnetic field in spin systems, when the number of cluster@©Nds only, which are present with probabilftyp,, so that
free from ghost bonds is identified as the free en¢B#j. one can write
In the case of RPg>1), the Poissonian definition stays

ev(\__jhereE sy is a sum over all configurations of present edges.
If each edge is independently present with probabitity
and absent with probability 4 p, then clearly

&%M=%me>2 Pp,(B')F(B')

0.20 {B'}cB
> 015 =2 P, (B)S(p,B). (B3)
= {8}
I
£ 010 ,
Ua) T Note thathz(B’) has a factomp, for each present bond in
&’ configurations’, and a factor * p,=q, for each bond i3
0.05 which is absent i8’. Factors associated with bonds nofin
can be summed out to give one and therefore need not be
0.00 bt considered. Thus ifB| is the number of present bonds in
10 15 20 25 30 35 40 45 5.0 configuration B and |B'| the number inB', P, (B')

1/2

Volume = (1/R) |23|,‘Bf| .

_ A8
=pz q
FIG. 8. lllustration of the similarities between RP and a conden- NOW let p,—1. In this case we can ex!oarﬁﬂpz,l%‘) n
sation transition. In this plotd =h/y is taken to be the analog of Powers ofq,. The zeroth-order contribution comes from

pressure and BY2 the analog of volume. The data are the same ad3’' =B, the first-order contribution from thi5| configura-
shown in Fig. 7. tions B which have exactly one borlaless than3, etc.:
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Eliminating a present ghost edge reduces the number of
S(p,.B)=p5  F(B)+ Q2P‘28‘_1b2 F(B—b) redundant constraints by one if both the following conditions
=B are satisfied(a) the remaining constraints that this site has
2 1B-2 , are enough to rigidizéi.e., k,+k,=g) and(b) the remain-
+02p2 > FAB-b—b)+---, ing ghost constraints that this site has are not enough to
bb’eB rigidize on their own(i.e., k,<g). The joint probability for
(B4)  these two conditions to be satisfied is

where we have writte#—b to denote the result of deleting 9-1 *
bondb from B. To first order inqs, 20 Pj(h)kE Pu(x)
i= =9-]

g-1 g-1 g-j-1

S(p2,B)=F(B)+dz 2, [F(B-b)~F(B)], (BS) =S e3Py S Pux)
i=0 j=0 k=0

therefore =R(7.h)=R(0Oh)=R-Ry, (B9)
_ L where we have defineR,=G,4(h) as the density of rigid
<f>Plpz <f>P1+q2< EB [A(B=b) f(B)]> ' sites in the presence of the fididfor a graph with no edges

P (v=0). The total number of ghost slotsi&éM and thus the

total number of present ghost bonds which upon removal
produce a change in the number of redundant constraints is

" (B6)

Taking derivatives with respect o, and lettingp,=1 one

finally finds that, for arbitraryr, on average
h
J
pé—?= < bEB [A(B)—FB— b)]>. (B7) NM 7 (R=Rp). (B10)

Equation (B7) generalizes previous results of Coniglio in Equation(B7), with p,=h/M, now implies that

Ref. [67], and is the tool we use in this section to derive (B,)
some important relations. !

Consider now the case in whick= B, (B), the total num- dh
ber of redundant constraints. In order to calculate the deriva- .
tive of B, with respect top, we note that when removing a YSiNg(Br),=7;N/2 one then has
bond b from a configuration of present bonds, the total

=N(R—Ry). (B11)

number of redundant constraints will be reduced by one if %=2(R—Rh). (B12)
and only ifb is overconstrained. Otherwiselifis not over- dh
constrained,B, remains unchanged by the removal laf
Equation(B7) then implies that Checking derivatives of y,
a(B,) a(B,) It is a trivial exercise to show thay,, as given by Eq.
apr =7 " = (B, (B8) (28 has the right derivatives, i.e., satisfies
Y
. . ‘9'}’r 2
where(B,,) is the average number of overconstrained bonds ——=R (B13)

in B o
A calculation of the field derivative gfB,) requires some agreement with Eq25), and
additional considerations. Equati@B7) was derived under
the assumption that each edge is independently present with ¥,
some fixed probability, while our definition of ghost field in EZZ{R_ Rnt, (B14)
Sec. Il C implies that each site can hazey numbern of
ghost constraints with Poissonian probabilit?,(h) in agreement with Eq.(B12. Now since ges=g[1

— a—hpn ; ; i i
=e "h"/n!. We can represent this Poissonian process in a—GgH(h)]—h[l—Gg(h)] one has thatigy/dh=Ggy(h)

way that enables us to use E&7) as follows. We assume _ 95"~ R
that each site has/>h slots connecting it to the back- 1=Ry—1. Therefore the derivatives ok [Eq. (22)] are

ground, and that each slot is occupied daye ghost edge one R2—1
. - B . E
with probability p,=h/M. For largeM, the probability to =

haven ghost edges on a site B,(h), so one has a realiza- dy 2

tion of the Poissonian distribution. This equivalent system

has a total oNM ghost slotseach occupied by a ghost bond ﬁ ~R-1 (B15)
with a small probabilityp,, so we can now use E@B7). oh '
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APPENDIX C: DERIVATION OF CRITICAL INDICES
1. Scalar percolation(g=1)

ExpandingR=G;(y) aroundy* =y*R* +h*, and tak-
ing into account the conditio®;(x*)=1/y* =1 (Sec. Il B)
one hasR~Ay—1/2(Ay)?, with Ay=y—y*. The critical
point is aty* =0 so one can write, to second order Aty
=y=9yR+h,

(yR+h)?

=vR+n—
R=yR+h 5

(Cy
For h=0 this givesR=2(y—1) soB=1.

On the critical isothermy=1 one hafR~R+h—1/2(R
+h)2. For small h this reads B~(R+h)?~R? or R
~h'? from which =2 results.

The susceptibilityy=JR/dh|,« diverges on approach to

the critical point asy«<(Ay)~?. Deriving Eq.(7) one gets

R Py

07_h:—1—yPg,l’ (C2

and recalling thaty*=[Py_;(y*)]"* we find that x
«(Ay)~t, ory=1.

2. Rigidity percolation (g>1)

In this case the critical point is an inflexion point Gf;,
thus we need to expand to third ordghis is in fact the

PHYSICAL REVIEW E68, 056104 (2003

Plugging this result back into EC3) and eliminating the
solutionR=R* one finds that the other two solutions behave
asARx(Avy)Y2 or p=1/2.

The derivation ofy=1 in the preceding section holds for
RP as well, thusy=1 also here. Note that Rushbrooke’s
(a+2B+y=2) and Griffith’s (@+ B(5+1))=2) relations
are satisfied withk=0, and this is consistent with the fact
that the constan® specific heat44) is zero.

APPENDIX D: BETHE LATTICES

A graph where each site has exactlyandomly chosen
neighbors is topologically equivalent to a Bethe lattice, ex-
cept for finite-size corrections. When this system is randomly
diluted, one obtains what is called “random bond model” in
Ref.[21], in which each of the bonds on a site is present
with probability p. In zero field, the densitRR of rigid sites is
defined by[20]

z
R=2, Q?(x), (D1)
i=9
wherex=pT, Q?(x)=()x/(1-x)*"), and T satisfies the
recursive equation
z—1

T=2 Q" Y(x). (D2)
1=9

reason why the universality class is not the same as for SPThis |ast equation admits multiple solutions, so the continu-

In doing this, Eqs(123 and(12b) imply that, fory~y*,

Ay

R~R* + —*+O((Ay)3), (C3
Y

with Ay=y—y* andy* = v* R* + h*. The coefficient of the
O((Ay)®) term is nonzero. Furthermordy=Ah+ y*AR
+RAv, and Eq.(C3) can be rewritten as

Y*R=9y*R* +x—x* + Ah+O((Ay)®)=RAy+Ah
=0((Ay)>3). (C4

On the critical isotherm £y=0) we thus have that\h
~(y*AR+Ah)3=AR~(Ah)'® so04s=3.

The exponenp is defined by the jum@g that the order
parameter suffers on the coexistence lihg behaves ag”

ity of the density of redundant bonds must be invoked in
order to determine the transition point, as first discussed in
Ref.[21]. The density of redundant bondép) is [21]

P 2 1
r(p)=J T2dp=l——g—J T2dp. (D3)
0 z p

Using the same procedure that was used for &ienyi
graphs in the rest of this work, one can exactly integrate this
last condition and conclude that, for zero field, the transition
point p. is determined by

2, (im29QP(x0=0. (D4)

The transition condition(D4) gives rise to a polynomial

for e—0, wheree>0 parametrizes the coexistence line andequation which is easily solved for small valuesgoand z

e€=0 on the critical point. Equivalentl}50], 8 may be de-
fined by the shape of the coexistence region iR-& dia-
gram, or its equivalentsee theH-R diagram of Fig. J. The
coexistence region widens 44 T|# below T*. Figure 7
shows a parabolic maximum, suggestifig 1/2. Neverthe-
less we derive this result explicitly in the following.
Equation(C3) [which approximates Ed7) in the neigh-
borhood of the critical poidthas three solutionR,<Rg

Forg=2 andz=5 the corresponding quadratic equation re-
sults inp.,=0.834 842 34. Fog=2 andz=6 a cubic equa-
tion is obtained, and its solution [ =0.656 511 134. This
last value is consistent with but more precise than
=0.656 as obtained in previous wdrk1] using numerically
exact matching algorithms for RB1,68.

Because Eq(D2) has a different structure from E(R), a
Poissonian field as defined in Sec. Il C does not seem ad-

<Rg for all {h,y} on the coexistence line. The discontinuity equate for this system. In practice, one finds that the equa-

we want to calculate isJg=Rg—R,. The Claussius-

tions forRin the presence of a Poissonian field cannot be put

Clapeyron relation(47) implies that, close to the critical in a simple closed form, as is the case of Eg).for Erdcs-

point, the coexistence line is defined yh=—R*Avy.

Renyi graphs. One may be tempted to try a “binomial” field

056104-14



RIGIDITY PERCOLATION IN A FIELD PHYSICAL REVIEW E 68, 056104 (2003

definition, in which each site hasghost bonds to the back- z

ground with probabilityQ{* Y)(h), however the resulting R=h+(1-h)> Q(x), (D6)
expressions do not simplify either. The simplest choice ap- 1=

pears to be the linear field discussed in Appendix A, in which .
each site is rigidly attached to the background gogon-  While the density of redundant bonds reads
straints with probabilityh, and free with probability +h. In

the presence of a linear field one has r(p,h)= prZd p=1— 2—9(1—h)— fszdp (D7)
L O Z p L
z—1
T=h+(1-h)> Q¥ Y(x) (D5) , o
=y which can again be integrated exactly. The overall results are
qualitatively the same as for Ersidrenyi graphs, although
and the resulting analytic expressions are by far less elegant.
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